中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 94-109 DOI: 10.7536/PC180506 Previous Articles   Next Articles

• Review •

The Principles and Applications of Electrospray-Based Ambient Ionization

Yuling Li, Junbo Zhao, Yinlong Guo**()   

  1. State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Revised: Online: Published:
  • Contact: Yinlong Guo
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Foundation of China(21532005); The work was supported by the National Natural Foundation of China(21472228); The work was supported by the National Natural Foundation of China(21874144); The National Key Research and Development Program of China(2016YFC0800704)
Richhtml ( 27 ) PDF ( 749 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most promising analytical instruments, mass spectrometry(MS) technology has shown a broad application prospect in medicine, food, environment, human health, national security and other related fields. While the different types of analytes have diverse characteristics and largely add the difficulties of direct ionization and mass spectrometric analysis. Ambient mass spectrometry(AMS) is a kind of newly emerging technology performed under ambient conditions that allows the direct analysis of sample or sample surfaces with little or no sample pretreatment. The development and applications of ambient ionization mass spectrometry(AI-MS) that realized ionization under ambient conditions without sample pretreatment have become a frontier field in mass spectrometry and deserved much attention over the last few years. Ambient ionization has high sensitivity and specificity. It also can rapidly analysis real-time in situ and achieve high-throughput analysis without destructing the sample. As a soft ionization method, ESI offers unique advantages for proteomics by allowing the direct analysis of thermolabile compounds and forming multiply charged ions. The developments and applications of mass spectrometry imaging(MSI) have become a frontier field in mass spectrometry and molecular imaging. Some recent contributions on the development of ambient ionization can be applied to mass spectrometry imaging. This review focuses on the development of ionization mechanism, characteristics and applications of various ion sources, which are based on electrospray ionization (ESI) principle.

Fig.1 Schematic diagram of the development of mass spectrometer ion source
Table 1 Electrospray-based ionization
Fig.2 (a) Schematic diagram of desorption electrospray ionization[24]; (b) Schematic showing the apparatus of time-resolved DESI-MS[58]
Fig.3 Schematic diagram of air flow assisted ionization[51]
Fig.4 Schematic diagram of probe electrospray ionization
Fig.5 Schematic showing the processes and apparatus used for APNR-MS[52]
Fig.6 Schematic of extraction electrospray ionization
Fig.7 Schematic diagram of solvent-assisted electrospray ionization[50]
Fig.8 (a) ESI-MS spectrum; (b) SAESI-MS spectrum of the reaction solution and Ph3 PAuNTf2 in CH2Cl2[50]
Fig.9 Schematic diagram of the CE-DBDI-MS interface[71]
Fig.10 Interface for online coupling of CE to ambient MS using DART[72]
Fig.11 Schematic diagram of paper spray ionization[41]
Fig.12 Schematic diagram of wooden-tips eletrospray ionization[46]
Fig.13 Schematic diagram of leaf spray[77]
Fig.14 Schematic of the electrospray ionization system with inhouse-made carbon fiber emitter[80]
Fig.15 Schematic view of the experimental setup allowing for reactions between radicals formed from a low-temperature helium plasma and peptide ions formed from nanoESI[82]
Fig.16 Model for the ionization behavior of pulsed-dc-ESI(positive mode). The procedure to generate one pulsed spray has four steps: solution polarization, positive electrospray, electrochemical reaction in liquid-gas surface, and discharge between gas and electrode, namely,step 1 to step 4, respectively[47]
Fig.17 Schematic Representation of the Setups for Electrostatic-Spray Ionization[49]
Fig.18 (a) Schematic of ZV-PSI[86]; (b) Spectrum of [Cr(H2O)4Cl2]+[87]
Fig.19 Schematic of fast eruption desorption ionization[53]
Fig.20 (a) Schematic of ZV-CFI; (b) Spectrum of diquat
Fig.21 (a) Spectrum of Torsememi; (b) Device schematic of ZV-CFI
Fig.22 (a) 3D and (b) side view schematic representation of the setup used for ESTASI-MSI[94]
[1]
王昊阳 ( Wang H Y), 郭寅龙(Guo Y L), 张立(Zhang L), 安登魁(An D K . 有机化学( Chinese Journal of Organic Chemistry), 2002,22:974.
[2]
J A C . Nature, 1922,109:671.
[3]
Smith R D, Loo J A, Edmonds C G, Barinaga C J, Udseth H R . Anal. Chem., 1990,62:882.
[4]
Richardson S D . Anal. Chem., 2010,84:4742.
[5]
Franchetti V S, Solka B H, Baitinger W E, Amy J W, Cooks R G . Int. J. Mass Spectrom. Ion. Phys., 1977,23:29.
[6]
Domon B, Aebersold R . Science, 2006,312:212.
[7]
Burlnsky D J, Cooks R G, Chess E K, Gross M L . Anal. Chem., 1982,54:645.
[8]
Caprioli R M, Farmer T B, Gile J . Anal. Chem., 1997,69:4751.
[9]
Bell R J, Short R T, van Amerom F H W, Byrne R H . Environ. Sci. Technol., 2007,41:8123.
[10]
Wiseman J M, Ifa D R, Venter A, Cooks R G . Nat. Protoc., 2008,3(3):517.
[11]
Sinz A . Mass Spectrom Rev., 2006,25:663.
[12]
Ojanpera I, Kolmonen M, Pelander A . Anal. Bioanal. Chem., 2012,403:1203.
[13]
McPhail D S . J. Mater. Sci., 2006,41:873.
[14]
Koppenaal D W, Eiden G C, Barinaga C J . J. Anal. At. Spectrom., 2004,19:561.
[15]
Cuyckens F, Claeys M . J. Mass Spectrom., 2004,39(1):1.
[16]
Combariza M Y, Fahey A M, Milshteyn A, Vachet R W . Int. J. Mass Spectrom., 2005,244(2/3):109.
[17]
Badu-Tawiah A K, Li A, Jjunju F P, Cooks R G . Angew. Chem. Int. Ed., 2012,51(37):9417.
[18]
Budzikiewicz H, Grigsby R D . Mass Spectrom Rev., 2006,25(1):146.
[19]
Pitt J J . Clin. Biochem. Rev., 2009,30:19.
[20]
Fortner E C, Zhao J, Zhang R Y . Anal. Chem., 2004,76:5436.
[21]
Yamashitat M, Fenn J B . J. Phys. Chem., 1984,88:4611.
[22]
Trimpin S . J. Am. Soc. Mass Spectrom., 2016,27:4.
[23]
Chait B T, Beavis R C . Anal. Chem., 63, 1991,63(24):1193.
[24]
Takats Z, Wiseman J M, Gologan B, Cooks R G . Science, 2004,306(5695):471.
[25]
Michael S M, Chien B M, Lubman D M . Anal. Chem., 1993,65:2614.
[26]
Li K Y, Tu H H, Ray A K . Langmuir, 2005,21:3786.
[27]
Kebarle P, Verkerk U H . Mass Spectrom Rev., 2009,28(6):898.
[28]
Fenn J B, Nguyen S . Proc. Natl. Acad. Sci. U. S.A., 2007,104:1111.
[29]
Iribarne J V, Thomson B A . J. Chem. Phys., 1976,64(6):2287.
[30]
高方园 ( Gao F Y), 张维冰 (Zhang W B), 关亚风 (Guan Y F), 张玉奎 (Zhang Y K) . 中国科学( Scientia Sinica Chimica), 2014,44(7):1181.
[31]
Fung Y M E, Adams C M, Zubarev R A . J. Am. Chem. Soc., 2009,131:9977.
[32]
Zubarev R A, Kelleher N L, McLafferty F W . J. Am. Chem. Soc., 1998,120:3265.
[33]
Robb D B, Rogalski J C, Kast J, Blades M W . Anal. Chem., 2012,84:4221.
[34]
Schnier P D, Price W D, Jockusch R A, Williams E R . J. Am. Chem. Soc., 1996,118:7178.
[35]
Chen H, Eberlin L S, Cooks R G . J. Am. Chem. Soc., 2007,129:5880.
[36]
Ashworth D J, Baird W M, Chang C, Ciupek J D, Busch K L, Cooks R G . Biomed. Mass Spectrom., 1985,12(7):309.
[37]
Little D P, Speir J P, Senko M W, O’Connor P B, McLafferty F W . Anal. Chem., 1994,66:2809.
[38]
Nemes P, Vertes A . Anal. Chem., 2007,79:8098.
[39]
Chen H, Cotte-Rodriguez I, Cooks R G . Chem. Commun., 2006 ( 6):597.
[40]
王昊阳 ( Wang H Y), 刘小攀 (Liu X P), 郭寅龙 (Guo Y L) . 中国科学( Scientia Sinica Chimica), 2017,47(12):1424.
[41]
Liu J J, Wang H, Manicke N E, Lin J M, Cooks R G, Ou Y Z . Anal. Chem., 2010,82:2463.
[42]
Chen H, Venter A, Cooks R G . Chem. Commun., 2006 ( 19):2042.
[43]
Law W S, Wang R, Hu B, Berchtold C, Meier L, Chen H W, Zenobi R . Anal. Chem, 2010,82:4494.
[44]
Yu Z, Chen L C, Mandal M K, Yoshimura K, Takeda S, Hiraoka K . J. Am. Soc. Mass Spectrom., 2013,24(10):1612.
[45]
Chen F M, Lin L Y, Zhang J, He Z Y, Uchiyama K, Lin J M . Anal. Chem., 2016,88:4354.
[46]
Hu B, So P K, Chen H W, Yao Z P . Anal. Chem., 2011,83:8201.
[47]
Wei Z W, Xiong X C, Guo C A, Si X Y, Zhao Y Y, He M Y, Yang C D, Xu W, Tang F, Fang X, Zhang S C, Zhang X R . Anal. Chem., 2015,87:11242.
[48]
Chen Z Y, A . Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 2008,77(036316):1.
[49]
Qiao L, Sartor R, Gasilova N, Lu Y, Tobolkina E, Liu B H, Girault H H . Anal. Chem., 2012,84:7422.
[50]
Zhang J T, Wang H Y, Zhu W, Cai T T, Guo Y L . Anal. Chem., 2014,86:8937.
[51]
He J M, Tang F, Luo Z G, Chen Y, Xu J, Zhang R P, Wang X H, Abliz Z . Rapid Commun. Mass Spectrom., 2011,25(7):843.
[52]
Liu P Y, Zhao P Y, Cooks R G, Chen H . Chem.Sci, 2017,8(9):6499.
[53]
Liu X P, Wang H Y, Dong G Q, Li Z Q, Guo Y L . J. Am. Soc. Mass Spectrom., 2018,29(6):1319.
[54]
Wu M X, Wang H Y, Zhang J T, Guo Y L . Anal. Chem., 2016,88:9547.
[55]
Ho C S, Lam C W K, Chan M H M, Cheung R C K, Law L K, Lit L C W, Ng K F, Suen M W M, Tai H L . Clin. Biochem. Rev., 2003 ( 24):3.
[56]
Takats Z, Wiseman J M, Cooks R G . J. Mass Spectrom., 2005,40(10):1261.
[57]
Huang M Z, Cheng S C, Cho Y T, Shiea J . Anal. Chim. Acta., 2011,702(1):1.
[58]
Cheng S, Wu Q H, Xiao H, Chen H . Anal.Chem, 2017,89:2338.
[59]
Brown T A, Chen H, Zare R N . Angew. Chem. Int.Ed., 2015,54(38):11183.
[60]
Schwarz H, Terlouw J K . Angew. Chem. Int.Ed., 1987,26:805.
[61]
McLafferty F W . Science, 1990,247:925.
[62]
Schwarz H, Goldberg N . Acc. Chem. Res., 1994,27:347.
[63]
McLafferty F W, Wesdemiotis C . Chem. Rev., 1987,87:485.
[64]
Wesdemiotis C, Cordero M M . Anal. Chem., 1994,66:861.
[65]
Cordero M M, Houser J J, Wesdemiotis C . Anal. Chem. 1993,65:1594.
[66]
McLafferty F W, Todd P J, McGilvery D C, Baldwin M A . J. Am. Chem. Soc., 1980,102:3360.
[67]
Li Y F, Zhang N, Zhou Y M, Wang J N, Zhang Y M, Wang J Y, Xiong C Q, Chen S M, Nie Z X . J. Am. Soc. Mass Spectrom., 2013,24(9):1446.
[68]
Lindenburg P W, Haselberg R, Rozing G, Ramautar R . Chromatographia, 2014,78(5/6):367.
[69]
Kleparnik K . Electrophoresis, 2013,34(1):70.
[70]
Heemskerk A A, Deelder A M, Mayboroda O A . Mass Spectrom.Rev., 2016,35(2):259.
[71]
Zhang Y D, Ai W P, Bai Y, Zhou Y L, Wen L H, Zhang X X, Liu H W . Anal. Bioanal. Chem., 2016,408(30):8655.
[72]
Chang C C, Xu G G, Bai Y, Zhang C S, Li X J, Li M, Liu Y, Liu H W . Anal. Chem., 2013,85:170.
[73]
张佳玲 ( Zhang J L), 霍飞凤 (Huo F F), 周志贵 (Zhou Z G), 白玉 (Bai Y), 刘虎威 (Liu H W) , 化学进展( Progress in Chemistry), 2012,24(1):101
[74]
Gross J H . Anal. Bioanal. Chem., 2014,406(1):63.
[75]
Zhang Y D, Li X J, Nie H G, Yang L, Li Z, Bai Y, Niu L, Song D Q, Liu H W . Anal. Chem., 2015,87:6505.
[76]
Li Z, Zhang J L, Zhang Y W, Bai Y, Liu H W . J. Anal. Test., 2017,1(1):2.
[77]
Liu J J, Wang H, Cooks R G, Ou Y Z . Anal. Chem., 2011,83:7608.
[78]
Hu B, So P K, Yang Y Y, Deng J W, Choi Y C, Luan T G, Yao Z P . Anal. Chem., 2018,90:1759.
[79]
Deng J W, Yu T T, Yao Y, Peng Q, Luo L J, Chen B W, Wang X W, Yang Y Y, Luan T G . Anal. Chim. Acta, 2017,954:52.
[80]
Liu J, Ro K W, Busman M, Knapp D R, . Anal. Chim, 2004,76:3599.
[81]
Nyadong L, Galhena A S, Ferna’ndez F M . Anal. Chem., 2009,81:7788.
[82]
Xia Y, Cooks R G . Anal. Chem., 2010,82:2856.
[83]
Schmidt A, Bahr U, Karas M . Anal. Chem., 2001,73:6040.
[84]
Wilm M, Mann M . Anal. Chem., 1996,68:1.
[85]
Fu X, Liang H X, Xia B, Huang C Y, Ji B C, Zhou Y . J. Agric. Food. Chem., 2017,65(37):8256.
[86]
Wleklinski M, Li Y, Bag S, Sarkar D, Narayanan R, Pradeep T, Cooks R G . Anal. Chem., 2015,87:6786.
[87]
Narayanan R, Pradeep T . Anal. Chem., 2017,89:10696.
[88]
刘虎威 ( Liu H W), 冯鲍盛 (Feng B S), 白玉 (Bai Y) . 大学化学( University Chemistry), 2013,28(4):1.
[89]
Chen L C, Yoshimural K, Yu Z, Zwata R, Ito H, Suzuki H, Mori K, Ariyada O, Takeda S, Kubota T, Hiroka K . J. Mass.Spectrom., 2009,44:1469.
[90]
Campbell D Z, Ferrira C R, Eberlin L S, Cooks R G . Anal. Bioanal. Chem., 2012,404:389.
[91]
Luo Z G, He J M, Chen Y, He J J, Gong T, Tang F, Wang X H, Zhang R P, Huang L, Zhang L F, Lv H N, Ma S G, Fu Z D, Chen X G, Yu S S, Abliz Z . Anal.Chem, 2013,85:2977.
[92]
罗志刚 ( Luo Z G), 贺玖明 (He J M), 刘月英 (Liu Y Y), 李铁钢 (Li T G), 何菁菁 (He J J), 张四纯 (Zhang S C), 张新荣 (Zhang X R), 再帕尔·阿不力孜 (Abliz Z) . 中国科学( Scientia Sinica Chimica), 2014,44(5):795.
[93]
van Geenen F A, Franssen M C, Schotman A H, Zuilhof H, Nielen M W . Anal. Chem., 2017,89:4031.
[94]
Qiao L, Tobolkina E, Lesch A, Bondarenko A, Zhong X, Liu B, Pick H, Vogel H, Girault H H . Anal. Chem., 2014,86:2033.
[1] Chao Zhao, Zongwei Cai. Mass Spectrometry Imaging and Omics for Environmental Toxicology Research [J]. Progress in Chemistry, 2021, 33(4): 503-511.
[2] Zixuan Wang, Xin Li, Zeper Abliz. Chemical Derivatization for Mass Spectrometric Analysis of Metabolite Isomers [J]. Progress in Chemistry, 2021, 33(3): 406-416.
[3] Lesi Cai, Meng-Chan Xia, Zhanping Li, Sichun Zhang, Xinrong Zhang. Bioimaging By Secondary Ion Mass Spectrometry [J]. Progress in Chemistry, 2021, 33(1): 97-110.
[4] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[5] Jingjing Liu, Xiaowei He, Yan He, Muqian Yu, Le Jiang, Bo Chen. Development and Application of Paper Spray Ionization Mass Spectrometry [J]. Progress in Chemistry, 2017, 29(6): 659-666.
[6] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[7] Xu Chong, Fan Yanxuan, Fan Linyuan, Cao Jie*, Hu Changwen*. Application of Mass Spectrometry in Polyoxometalate Chemistry [J]. Progress in Chemistry, 2013, 25(05): 809-820.
[8] Chu Genbai, Chen Jun, Liu Fuyi, Sheng Liusi. Kinetics of Gas-Phase Radical Reactions Using Photoionization Mass Spectrometry with Synchrotron Source [J]. Progress in Chemistry, 2012, 24(11): 2097-2105.
[9] Zhang Jialing, Huo Feifeng, Zhou Zhigui, Bai Yu, Liu Huwei. The Principles and Applications of An Ambient Ionization Method——Direct Analysis in Real Time (DART) [J]. Progress in Chemistry, 2012, 24(01): 101-109.
[10] Shi Lei, Liu Shuying, Zubarev Roman. ECD Technology in Biological Mass Spectrometry [J]. Progress in Chemistry, 2011, 23(8): 1710-1718.
[11] Wang Sheng, Zou Xia, Zhang Yan. Recent Advances in Mass Spectrometry Based Analysis of Protein O-glycosylation [J]. Progress in Chemistry, 2010, 22(12): 2428-2435.
[12] . Applications of Ultrafiltration Mass Spectrometry in the Studies on  interaction between medicine and biological target [J]. Progress in Chemistry, 2010, 22(11): 2207-2214.
[13] . Development of Identification for Post-Translational Modifications in Histones by Mass Spectrometry Based Proteomics [J]. Progress in Chemistry, 2010, 22(04): 713-719.
[14] Wang Hongmin Zhang Ping Huang Linjuan Wang Zhongfu. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry(MALDI) Application in Carbohydrates Analysis [J]. Progress in Chemistry, 2009, 21(6): 1335-1343.
[15] . Arsenic Speciation Analysis [J]. Progress in Chemistry, 2009, 21(0203): 467-473.