中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 571-584 DOI: 10.7536/PC141117 Previous Articles   Next Articles

• Review and evaluation •

Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy

Wang Fangli1, Hong Min*1,2, Xu Lidan1, Geng Zhirong*2   

  1. 1. School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China;
    2. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21105042) and the Natural Science Foundation of Shandong Province(No. ZR2010BQ021).
PDF ( 2376 ) Cited
Export

EndNote

Ris

BibTeX

Matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS) is a routine analytical characterization method, which was initially applied in the analysis of biological macromolecules, such as protein, polypeptide, polysaccharide and nucleic acid. However, MALDI-MS does not allow the sensitive detection of analytes in the low mass region (m/z < 700) because of strong background signals arising from the matrix. Recently, the organic matrix-free laser desorption ionization mass spectrometry based on nanomaterials (which is also known as surface-assisted laser desorption ionization mass spectrometry, SALDI-MS) has effectively solved the above problem. With the use of nanomaterial-based MS technique, the detectable mass range of SALDI-MS has been extended from the low-mass region for the analysis of small molecules to the high-mass region for the analysis of large molecules. The nanomaterial-based MS technique transfers energy through the nanometer material with no interference peaks between the matrix and analyte in the low molecular weight. In addition, SALDI-MS also affords several advantages, such as simple sample preparation, high signal-to-noise ratio, high salt tolerance, the improved reproducibility of peak intensities and the possibility of quantitative analysis, showing good prospects. In this paper, we mainly describe and review in detail four types of nanomaterials developed for application in SALDI-MS detection and imaging that were reported in recent years, including carbon nanomaterials (fullerenes, carbon nanotubes, graphene and graphene oxide), silicon nanomaterials (porous silicon, silicon nanofiber, silica nanoparticles), other nanoparticles (including metal nanoparticles, metal oxide nanoparticles, inorganic nanoparticles and quantum dots) and nanoporous materials. Besides, the energy transfer mechanism of nanomaterials in the application of SALDI-MS is discussed. Finally, the future research content and direction as well as the important problem to be studied are discussed.

Contents
1 Introduction
2 Application of different nanomaterials in SALDI-MS
2.1 Carbon-based nanomaterials for SALDI-MS
2.2 Silicon-based nanomaterials for SALDI-MS
2.3 Other nanoparticles for SALDI-MS
2.4 Hybrid nanoporous materials for SALDI-MS
3 Mechanism of SALDI-MS
4 Conclusion and outlook

CLC Number: 

[1] Karas M, Hillenkamp F. Anal. Chem., 1988, 60: 2299.
[2] Hillenkamp F, Peter-Katalinic J. Weinheim:Wiley-VCH, 2007, 1: 1.
[3] 张森(Zhang S),倪彧(Ni Y),李树奇(Li S Q),孔祥蕾(Kong X L). 化学进展(Progress in Chemistry), 2014, 26: 158.
[4] Chiu T C, Huang L S, Lin P C, Chen Y C, Chen Y J, Lin C C, Chang H T. Recent Pat. Nanotechnol., 2007, 1: 99.
[5] Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Rapid Commun. Mass Spectrom., 1988, 2: 151.
[6] Sunner J, Dratz E, Chen Y C. Anal. Chem., 1995, 67: 4335.
[7] Wei J, Buriak J M, Siuzdak G. Nature, 1999, 399: 243.
[8] Law K P, Larkin J R. Anal. Bioanal. Chem., 2011, 399: 2597.
[9] Chiang C K, Chen W T, Chang H T. Chem. Soc. Rev., 2011, 40: 1269.
[10] Peterson D S. Mass Spectrom. Rev., 2007, 26: 19.
[11] Zhang J L, Li Z, Zhang C S, Feng B S, Zhou Z G, Bai Y, Liu H W. Anal. Chem., 2012, 84: 3296.
[12] Rainer M, Najam-ul-Haq M, Huck C W, Vallant R M, Heigl N, Hahn H, Bakry R, Bonn G K, Recent Pat. Nanotechnol., 2007, 1: 113.
[13] Bonn G K, Feuerstein I, Huck C W, Najam-ul-Haq M, Rainer M, Stecher G, Schwarzmann, G., Steinmüller-Nethl, D., Steinmüller D. WO 05096346, 2005.
[14] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162.
[15] Nakamura E, Isobe H. Acc. Chem. Res., 2003, 36: 807.
[16] Benyamini H, Shulman-Peleg A, Wolfson H J, Belgorodsky B, Fedeev L, Gozin M. Bioconjugate Chem., 2006, 17: 378.
[17] Hopwood F G, Michalak L, Alderdice D S, Fisher K J, Willett G D. Rapid Commun. Mass Spectrom., 1994, 8: 881.
[18] Shiea J, Huang J P, Teng C F, Jeng J, Wang L Y, Chiang L Y. Anal. Chem., 2003, 75: 3587.
[19] Xu S, Li Y, Zou H F, Qiz J,Guo Z, Guo B. Anal. Chem., 2003, 75: 6191.
[20] Chen W Y, Wang L S, Chiu H T, Chen Y C, Lee C Y. J. Am. Chem. Soc.Mass Spectrom., 2004, 15: 1629.
[21] Pan C S, Xu S Y, Zou H F, Guo Z, Zhang Y, Guo B C. J. Am. Soc. Mass Spectrom., 2005, 16: 263.
[22] Ren S F, Zhang L, Cheng Z H, Guo Y L. J. Am. Chem. Soc., 2005, 16: 333.
[23] Pan C S, Xu S Y, Hu L G, Su X Y, Qu J J, Zou H F, Guo Z, Zhang Y, Guo B C. J. Am. Soc. Mass Spectrom., 2005, 16: 883.
[24] Hu L, Xu S Y, Pan C S, Yuan C G, Zou H F, Jiang G B. Environ. Sci. Technol., 2005, 39: 8442.
[25] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[26] Dong X L, Cheng J S, Li J H, Wang Y S. Anal. Chem., 2010, 82: 6208.
[27] Lu M H, Lai Y Q, Chen G N, Cai Z W. Anal. Chem., 2011, 83: 3161.
[28] Shi C Y, Meng J R, Deng C H. Chem. Commun., 2012, 48: 2418.
[29] Kawasaki H, Nakai K, Arakawa R, Athanassiou E K, Grass R N, Stark W J. Anal. Chem., 2012, 84: 9268.
[30] Gulbakan B, Yasun E, Shukoor M I, Zhu Z, You M X, Tan X H, Sanchez H, Powell D H, Dai H J, Tan W H. J. Am. Chem. Soc., 2010, 132: 17408.
[31] Kim Y K, Na H K, Kwack S J, Ryoo S R, Lee Y M, Hong S H, Hong S W, Jeong Y, Min D H. ACS Nano, 2011, 5: 4550.
[32] Kim Y K, Min D H. Langmuir, 2012, 28: 4453.
[33] Shen Z X, Thomas J J, Averbuj C, Broo K M, Engelhard M, Crowell E J, Finn M G, Siuzdak G. Anal. Chem., 2001, 73: 612.
[34] Nordstrom A, Apon J V, Uritboonthai W, Go E, Siuzdak G. Anal. Chem., 2006, 78: 272.
[35] Pihlainen K, Grigoras K, Franssila S, Ketola R, Kotiaho T, Kostiainen R. J. Mass Spectrom., 2005, 40: 539.
[36] Zou H F, Zhang Q C, Guo Z, Guo B C, Zhang Q, Chen X M. Angew. Chem. Int. Ed., 2002, 41: 646.
[37] Go E P, Apon J V, Luo G, Saghatelian A, Daniels R H, Sahi V, Dubrow R, Cravatt B F, Vertes A, Siuzdak G. Anal. Chem., 2005, 77: 1641.
[38] Northen T R, Yanes O, Northen M T, Marrinucci D, Uritboonthai W, Apon J, Golledge S L, Nordstr A, Siuzdak G. Nature, 2007, 449: 1033.
[39] Tata A, Fernandes A P, Santos V G, Alberici R M, Araldi D, Parada C A, Braguini W, Veronez L, Bisson G S, Reis F Z, Alberici L C, Eberlin M N. Anal. Chem., 2012, 84: 6341.
[40] Woo H K, Northen T R, Yanes O, Siuzdak G. Nat. Protoc., 2008, 3: 1341.
[41] Yanes O, Woo H K, Northen T R, Oppenheimer S R, Shriver L, Apon J, Estrada M N, Potchoiba M J, Steenwyk R, Manchester M, Siuzdak G. Anal. Chem., 2009, 81: 2969.
[42] Patti G J, Woo H K, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon J V, Steenwyk R, Manchester M, Siuzdak G. Anal. Chem., 2010, 82: 121.
[43] Kinumi T, Saisu T, Takayama M, Niwa H. J. Mass Spectrom., 2000, 35: 417.
[44] Zhang Q C, Zou H F, Guo Z, Zhang Q, Chen X, Ni J Y. Rapid Commun. Mass Spectrom., 2001, 15: 217.
[45] Wen X J, Dagan S, Wysocki V H. Anal. Chem., 2007, 79: 434.
[46] Dupre? M, Enjalbal C, Cantel S, Martinez J, Megouda N, Hadjersi T, Boukherroub R, Coffinier Y. Anal. Chem., 2012, 84: 10637
[47] McLean J A, Stumpo K A, Russell D H. J. Am. Chem. Soc., 2005, 127: 5304.
[48] Castellana E T, Russell D H. Nano Lett., 2007, 7: 3023.
[49] Wu H P, Yu C J, Lin C Y, Lin Y H, Tseng W L. J. Am. Soc. Mass Spectrom., 2009, 20: 875.
[50] Chiang N C, Chiang C K, Lin Z H, Chiu T C, Chang H T. Rapid Commun. Mass Spectrom., 2009, 23: 3063.
[51] Su C L, Tseng W L. Anal. Chem., 2007, 79: 1626.
[52] Amendola V, Litti L, Meneghetti M. Anal. Chem., 2013, 85: 11747.
[53] Chen W T, Chiang C K, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 864.
[54] Chen L C, Yonehama J, Ueda T, Hori H, Hiraoka K, J. Mass Spectrom., 2007, 42: 346.
[55] Shibamoto K, Sakata K, Nagoshi K, Korenaga T. J. Phys. Chem. C, 2009, 113: 17774.
[56] Castellana E T, Gamez R C, Gomez M E, Russell D H. Langmuir, 2010, 26: 6066.
[57] Gámez F, Hurtado P, Castillo P M, Caro C, Hortal A R, Zaderenko P, Martínez-Haya B. Plasmonics, 2010, 5: 125.
[58] Weng C, Cang J S, Chang J Y, Hsiung T M, Unnikrishnan B, Hung Y L, Tseng Y T, Li Y J, Shen Y W, Huang C C. Anal. Chem., 2014, 86: 3167.
[59] Liu Y C, Chang H T, Chiang C K, Huang C C. ACS Appl. Mater. Interfaces, 2012, 4: 5241.
[60] Li Y J, Tseng Y T, Unnikrishnan B, Huang C C. ACS Appl. Mater. Interfaces, 2013, 5: 9161.
[61] Chiu W C, Huang C C. Anal. Chem., 2013, 85: 6922.
[62] Liu Y C, Chiang C K, Chang H T, Lee Y F, Huang C C. Adv. Funct. Mater., 2011, 21: 4448.
[63] Zhu Z J, Ghosh P S, Miranda O R, Vachet R W, Rotello V M. J. Am. Chem. Soc., 2008, 130: 14139.
[64] Zhu Z J, Rotello V M, Vachet R W. Analyst, 2009, 134: 2183.
[65] Chiu T C, Chang L C, Chiang C K, Chang H T. J. Am. Soc. Mass Spectrom., 2008, 19: 1343.
[66] Shrivas K, Wu H F. Rapid Commun. Mass Spectrom., 2008, 22: 2863.
[67] Wang M T, Liu M H, Wang R C, Changa S Y. J. Am. Soc. Mass Spectrom., 2009, 20: 1925.
[68] Yan H, Xu N, Huang W Y, Han H M, Xiao S J. Int. J. Mass Spectrom., 2009, 281: 1.
[69] Cha S, Song Z H, Nikolau B J, Yeung E S. Anal. Chem., 2009, 81: 2991.
[70] Hayasaka T, Goto-Inoue N, Zaima N, Shrivas K, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M. J. Am. Soc. Mass Spectrom., 2010, 21: 1446.
[71] Tu W, Takai K, Fukui K I, Miyazaki A, Enoki T, J. Phys. Chem. B, 2003, 107: 10134.
[72] Bouslimani A, Bec N, Glueckmann M, Hirtz C, Larroque C. Rapid Commun. Mass Spectrom., 2010, 24: 415.
[73] Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P. Angew. Chem. Int. Ed., 2006, 45: 7824.
[74] Kawasaki H, Ozawa T, Hisatomi H, Arakawa R. Rapid Commun. Mass Spectrom., 2012, 26: 1849.
[75] Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, Mafune F. Anal. Sci., 2009, 25: 339.
[76] Kawasaki H, Yonezawa T, Watanabe T, Arakawa R. J. Phys. Chem. C, 2007, 111: 16278.
[77] Chiang C K, Chiang N C, Lin Z H, Lan G Y, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 1204.
[78] Yao T, Kawasaki H, Watanabe T, Arakawa R. Int. J. Mass Spectrom., 2010, 291: 145.
[79] Kawasaki H, Yao T, Suganuma T, Okumura K, Iwaki Y, Yonezawa T, Kikuchi T, Arakawa R. Chem. Eur. J., 2010, 16: 10832.
[80] Watanabe T, Kawasaki H, Yonezawa T, Arakawa R. J. Mass Spectrom., 2008, 43: 1063.
[81] Kailasa S K, Wu H F. Microchim Acta, 2013, 180: 405.
[82] Chen Z M, Geng Z R, Shao D L, Mei Y H, Wang Z L. Anal. Chem., 2009, 81: 7625.
[83] Chiang C K, Yang Z, Lin Y W, Chen W T, Lin H J, Chang H T. Anal. Chem., 2010, 82: 4543.
[84] Chen W T, Chiang C K, Lee C H, Chang H T. Anal. Chem., 2012, 84: 1924.
[85] Arakawa R, Kawasaki H. Anal. Sci., 2010, 26: 1229.
[86] Okuno S, Arakawa R, Okamoto K, Matsui Y, Seki S, Kozawa T, Tagawa S, Wada Y, Anal. Chem., 2005, 77: 5364.
[87] Wada Y, Yanagishita T, Masuda H. Anal. Chem., 2007, 79: 9122.
[88] Jokinen V, Aura S, Luosujvi L, Sainiemi L, Kotiaho T, Franssila S, Baumann M. J. Am. Soc. Mass Spectrom., 2009, 20: 1723.
[89] Nitta S, Yamamoto A, Kurita M, Arakawa R, Kawasaki H. ACS Appl. Mater. Interfaces., 2014, 6: 8387.
[90] Abdelhamid H N, Wu B S, Wu H F. Talanta, 2014, 126: 27.
[91] Kawasaki H, Sugitani T, Watanabe T, Yonezawa T, Moriwaki H, Arakawa R. Anal. Chem., 2008, 80: 7524.
[92] Kuo T R, Wang D Y, Chiu Y C, Yeh Y C, Chen W T, Chen C H, Chen C W, Chang H C, Hu C C, Chen C C. Anal. Chim. Acta, 2014, 809: 97.
[93] Hong M, Qiu F, Huang L L, Zhu J. J. Phys. Chem. C, 2008, 112: 11078.
[94] Hong M, Zhou X, Li J P, Tian Y, Zhu J. Anal. Chem., 2009, 81: 8839.
[95] Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Rapid Commun. Mass Spectrom., 1988, 2: 151.
[96] Law K P, Larkin J R. Anal. Bioanal. Chem., 2011, 399: 2597.
[97] Tang H W, Ng K M, Lu W, Che C M, Anal. Chem., 2009, 81: 4720.
[98] Chen S, Zheng H, Wang J N, Hou J, He Q, Liu H H, Xiong C Q, Kong X L, Nie Z X. Anal. Chem., 2013, 85: 6646.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[6] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[7] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[10] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[11] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[12] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[13] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[14] Hongmei Bi, Xiaojun Han. Design and Fabrication of Magnetically Responsive Drug Delivery Carriers [J]. Progress in Chemistry, 2018, 30(12): 1920-1929.
[15] Xuguang Li, Tingting Du, Jin Liu, Xinlei Liu, Pengkun Ma, Yu Qi, Wei Chen*. Environmental Transformation of Engineered Carbon Nanomaterials and Its Implications [J]. Progress in Chemistry, 2017, 29(9): 1021-1029.