中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 383-397 DOI: 10.7536/PC170833 Previous Articles   Next Articles

• Review •

Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics

Juan Ren1, Shen Bian1, Yiyun Wang1, Xianglei Kong1,2*   

  1. 1. State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Nankai Universiy, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21475065, 21627801).
PDF ( 919 ) Cited
Export

EndNote

Ris

BibTeX

Serine octamer as a unique “magic-number” cluster in the gas phase, has been extensively studied by experimentalists and theorists since its discovery in mass spectrometry in 2001. It is characterized by a pronounced preference of homochirality. Interestingly, the chirality of serine octamer can transfer to other molecules through enantioselective substitution reactions. Thus it is suggested that it might be related to the origin of our homochiral world. In this review, all the results and progresses in the formation, structure and chiral signature of serine octamer and substituted serine octamer over the past years are summarized. Different methods, including mass spectrometry with different ionization sources, gas phase H/D exchange, ion mobility, infrared photodissociation spectroscopy, and theoretical calculations are applied for the cluster ions. Different characteristics of the magic cluster are discovered gradually, helping us to have a deep insight into its structure and role in chiral recognition and transmission. However, due to the complexity of the system, it is still a big challenge to understand its true structure, the reason of its performance in homochirality and its role in the origin of biomolecular homochirality.
Contents
1 Introduction
2 Generation of serine octamer
2.1 Electrospray
2.2 Other spray-based ionization method
2.3 Evaporation and sublimation
2.4 Other method
2.5 Mechanism
3 Structural studies
3.1 MS/MS
3.2 Gas-phase H/D exchange
3.3 Ion mobility
3.4 IRPD spectroscopy
3.5 Theoretical calculation
4 Substituted serine octamers
4.1 Substituted by other amino acids
4.2 Substituted by sugars
4.3 Other relative clusters
5 Chiral characteristic
5.1 Enantiometic enrichment and chiral transmission
5.2 Chiral differentiation
5.3 Discussion
6 Conclusion

CLC Number: 

[1] Becker E W, Bier K, Henkes W Z. Phys., 1956, 146:333.
[2] Castleman A W, Khanna S N. J. Phys. Chem. C, 2009, 113:2664.
[3] Kroto H W, Heath J R, O'Brian S C, Curl R F, Smalley R E. Nature, 1985, 318:162.
[4] Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M. Science, 1989, 246:64.
[5] Fenn J B. Angew. Chem. Int. Ed., 2003, 42:3871.
[6] Karas M, Hillenkamp F. Anal. Chem., 1988, 60:2299.
[7] Cooks R G, Zhang D, Koch K J, Gozzo F C, Eberlin M N. Anal. Chem., 2001, 73:3646.
[8] Julian R R, Hodyss R, Kinnear B, Jarrold M, Beauchamp J L. J. Phys. Chem. B, 2002, 106:1219.
[9] Counterman A E, Clemmer D E. J. Phys. Chem. B, 2001, 105:8092.
[10] Gronert S, O'Hair R A J, Fagin A E. Chem. Commun., 2004, 17:1944.
[11] Mazurek U, Geller O, Lifshitz C, McFarland M A, Marshall A G, Reuben B G. J. Phys. Chem. A, 2005, 109:2107.
[12] Oh H B, Lin C, Hwang H Y. J. Am. Chem. Soc., 2005, 127:4076.
[13] Kong X L, Tsai I A, Sabu S. Angew. Chem. Int. Ed., 2006, 45:4130.
[14] Kong X L, Lin C, Infusini G. Chem. Phys. Chem., 2009, 10:2603.
[15] Sunahori F X, Yang G C, Kitova E N, Klassen J S, Xu Y J. Phys. Chem. Chem. Phys., 2013, 15:1873.
[16] Liao G H, Yang Y J, Kong X L. Phys. Chem. Chem. Phys., 2014, 16:1554.
[17] Ren J, Wang Y Y, Feng R X, Kong X L. Chin. Chem. Lett., 2017, 28:537.
[18] Seo J, Warnke S, Pagel K, Bowers M T, Helden G V. Nat. Chem., 2017, 9:1263.
[19] Takats Z, Nanita S C, Cooks R G, Schlosser G, Vekey K. Anal. Chem., 2003, 75:1514.
[20] Takats Z, Nanita S C, Cooks R G. Angew. Chem. Int. Ed., 2003, 42:3521.
[21] Myung S, Julian R R, Nanita S C, Cooks R G, Clemmer D E. J. Phys. Chem. B, 2004, 108:6105.
[22] Kunimura M, Sakamoto S, Yamaguchi K. Org. Lett., 2002, 4:347.
[23] Chen H W, Li M, Jin W, Jin Q H, Zheng J. Chem. Res. Chinese U., 2007, 23(6):650.
[24] Sakamoto S, Fujita M, Kim K, Yamaguchi K. Tetrahedron, 2000, 56:955.
[25] Yamaguchi K. J. Mass Spectrom., 2003, 38:473.
[26] Hirabayashi A, Sakairi M, Koizumi H. Anal. Chem., 1994, 66:4557.
[27] Hirabayashi A, Sakairi M, Koizumi H. Anal. Chem., 1995, 67:2878.
[28] Takats Z, Wiseman J M, Gologan B, Cooks R G. Anal. Chem., 2004, 76:4050.
[29] Wiseman J M, Takats Z, Gologan B, Davisson V J, Cooks R G. Angew. Chem. Int. Ed., 2005, 44:913.
[30] Schmelzeisen-Redeker G, Bütfering L, Röllgen F W. Int. J. Mass Spectrom. Ion Processes, 2002, 90:139.
[31] Takats Z, Wiseman J M, Cooks R G. Science, 2004, 306:471.
[32] Takats Z, Cooks R G. Chem. Commun., 2004, 4:444.
[33] Yang P, Xu R, Nanita S C, Cooks R G. J. Am. Chem. Soc., 2006, 128:17074.
[34] Nanita S C, Cooks R G. Angew. Chem. Int. Ed., 2006, 45:554.
[35] Perry R H, Wu C, Nefliu M, Cooks R G. Chem. Commun., 2007, 43:1071.
[36] Baumeister K J, Simon F F J. Heat Transfer., 1973, 95:166.
[37] Tartarini P, Lorenzini G, Randi M R. Heat Mass Transfer, 1999, 34:437.
[38] Ferreira da Silva F, Bartl P, Denifl S, Märk T D, Ellis A M, Scheier P. ChemPhysChem, 2010, 11:90.
[39] Iribarne J V, Thomson B A. J. Chem. Phys., 1976, 64:2287.
[40] Thomson B A, Iribarne J V. J. Chem. Phys., 1979, 71:4451.
[41] Dole M, Mack L L, Hines R L. J. Chem. Phys., 1968, 49:2240.
[42] De la Mora Fernandez J. Anal. Chim. Acta, 2000, 406:93.
[43] Konermann L, Ahadi E, Rodriguez A D, Vahidi S. Anal. Chem., 2013, 85:2.
[44] Gamero-Castano M, de la Mora Fernandez J. J. Mass Spectrom., 2000, 35:790.
[45] Nguyen S, Fenn J B. Proc. Natl. Acad. Sci., 2007, 104:1111.
[46] Wang G D, Cole R B. Anal. Chim. Acta, 2000, 406:53.
[47] Kebarle P. J. Mass Spectrom., 2000, 35:804.
[48] Spencer E A C, Ly T, Julian R R. Int. J. Mass Spectrom., 2008, 270:166.
[49] Vandenbussche S, Vandenbussche G, Reisse J, Bartik K. Eur. J. Org. Chem., 2006, 14:3069.
[50] Nanita S C, Cooks R G. J. Phys. Chem. B, 2005, 109:4748.
[51] Nanita S C, Sokol E, Cooks R G. J. Am. Soc. Mass Spectrom., 2007, 18:856.
[52] Campbell S, Rodgers M T, Marzluff E M, Beauchamp J L. J. Am. Chem. Soc., 1994, 116:9765.
[53] Campbell S, Rodgers M T, Marzluff E M, Beauchamp J L. J. Am. Chem. Soc., 1995, 117:12840.
[54] Takats Z, Schlosser G, Vekey K. Int. J. Mass Spectrom., 2003, 228:729.
[55] Valentine S J, Clemmer D E. J. Am. Chem. Soc., 1997, 119:3558.
[56] Geller O, Lifshitz C. Int. J. Mass Spectrom., 2003, 227:77.
[57] Ustyuzhanin P, Ustyuzhanin J, Lifshitz C. Int. J. Mass Spectrom., 2003, 223:491.
[58] Takats Z, Nanita S C, Schlosser G, Vekey K, Cooks R G. Anal. Chem., 2003, 75:6147.
[59] Mazurek U, McFarland M A, Marshall A G, Lifshitz C. Eur. J. Mass Spectrom., 2004, 10:755.
[60] Makarov A A. Anal. Chem., 2000, 72:1156.
[61] Eyler J R. Mass Spectrom. Rev., 2009, 28:448.
[62] Fridgen T D. Mass Spectrom. Rev., 2009, 28:586.
[63] Polfer N C. Chem. Soc. Rev., 2011, 40:2211.
[64] Yin H, Kong X L. J. Am. Soc. Mass Spectrom., 2015, 26:1455.
[65] Feng R X, Mu L, Yang S M, Kong X L. Chin. Chem. Lett., 2016, 27:593.
[66] Schalley C A, Weis P. Int. J. Mass Spectrom., 2002, 221:9.
[67] Wang C H, Wu Q, Fan W J, Zhang R Q, Lin Z J. Org. Biomol. Chem., 2012, 10:5049.
[68] Koch K J, Gozzo F C, Zhang D, Eberlin M N, Cooks R G. Chem. Commun., 2001, 18:1854.
[69] Clemmer D E, Jarrold M F. J. Mass Spectrom., 1997, 32:577.
[70] Costa A B, Cooks R G. Phys. Chem. Chem. Phys., 2011, 13:877.
[71] Nanita S C, Takats Z, Myung S, Clemmer D E, Cooks R G. J. Am. Soc. Mass Spectrom., 2004, 15:1360.
[72] Miller S A, Luo H, Pachuta S J, Cooks R G. Science, 1997, 275:1447.
[73] Ouyang Z, Takats Z, Blake T A, Gologan B, Guymon A J, Wiseman J M, Oliver J C, Davisson V J, Cooks R G. Science, 2003, 301:1351.
[74] Kocn K J, Gozzo F C, Nanita S C, Takats Z, Eberlin M N, Cooks R G. Angew. Chem. Int. Ed., 2002, 41:1721.
[75] Kong X L. J. Mass Spectrom., 2011, 46:535.
[76] Tugce E, Andrey S, Zhasmina V Z, Georg H, Nataliya K, Yan X N, Trolle R L. Langmuir, 2010, 26:18841.
[77] Nemes P, Schlosser G, Vekey K. J. Mass Spectrom., 2005, 40:43.
[78] Julian R R, Myung S, Clemmer D E. J. Phys. Chem. B, 2005, 109:440.
[79] Myung S, Lorton K P, Merenbloom S I. J. Am. Chem. Soc., 2007, 128:15988.
[80] Holliday A E, Atlasevich N, Myung S. J. Phys. Chem. A, 2013, 117:1035.
[81] Holliday A E, Atlasevich N, Valentine S J, Clemmer D E. J. Phys. Chem. A, 2012, 116:11442.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[14] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[15] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.