中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 70-82 DOI: 10.7536/PC180507 Previous Articles   Next Articles

• Review •

Synthesis and Application in the Polycondensation of Long-Chain Aliphatic Dicarboxylic Acids

Xixi Wang, Lu Dai, Suyun Jie**(), Bogeng Li   

  1. State Key Laboratory of Chemical Engineering, College of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Contact: Suyun Jie
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the Zhejiang Provincial Natural Science Foundation of China(LY16B040001); The Fundamental Research Funds for the Central Universities(2018FZA4020)
Richhtml ( 24 ) PDF ( 1115 ) Cited
Export

EndNote

Ris

BibTeX

Long-chain aliphatic dicarboxylic acids generally refer to the saturated straight-chain dicarboxylic acids containing ten or more carbon atoms. Due to the existence of carboxyl functional groups in each terminal, they are usually applied to synthesize perfumes, special nylon engineering plastics, hot melt adhesives, coatings, plasticizers, senior lubricants and many other chemical products. In addition, they have better properties than short-chain dicarboxylic acids because of their long methylene sequences, which makes the corresponding composite materials have superior performance and be widely used in chemical industry, light industry, national defense, automobile industry, engineering materials and other fields. Besides, they could be also used to develop new polymer products. Long-chain aliphatic dicarboxylic acids do not exist alone in nature. At present, they have been synthesized mainly via chemical synthesis and biological fermentation in industry. In this review, the synthetic methods of long-chain aliphatic dicarboxylic acids are summarized, including traditional organic synthesis, biotechnology conversion, olefin metathesis, isomerization hydroxycarbonylation and functionalization of polyethylene. The application of long-chain aliphatic dicarboxylic acids in the polycondensation(mainly of polyesters and polyamides) is also briefly introduced. Finally, the problems remaining to be solved in the synthesis and the further advances are prospected.

Scheme S1 Chain extension of 1,10-dibromodecane via Grignard coupling with short-chain α,ω-ester acid chlorides[6]
Scheme 2 Chain extension of decane-1,10-dioic acid to docosane-1,22-dioic acid[7]
Scheme 3 Multistep synthesis of pentacontane-1,50-dioic acid (n=2) and tetranonacontahectane-1,194-dioic acid (n=4) (The first reaction sequence starts with x=10, whereas n is the number of cycles applied)[12]
Scheme 4 Synthesis of azelaic and brassylic acid by ozonolysis of oleic acid and erucic acid, respectively[15]
Scheme 5 Enzymatic ω-oxidation of fatty acids[16,17,18]
Scheme 6 Biocatalytic conversion of fatty acids to the corresponding ω-functionalized acids[25,26,27,28,29,30]
Scheme 7 Oleic acid is converted into either nonanoic acid and ω-hydroxynonanoic acid or n-octanol and 1,10-decanedioic acid by multistep enzyme-catalyzed reactions[31]
Scheme 8 Self-metathesis of erucic acid[43]
Scheme 9 Synthesis of 1,20-eicosanedioic acid[55]
Scheme 10 Preparation of long-chain α,ω-difunctional compounds from unsaturated fatty acids (x=1, oleic acid as starting material; x=5, erucic acid)[4]
Scheme 11 Isomerizing hydroxycarbonylation of oleic acid to generate linear,long-chain α,ω-dicarboxylic acids[58]
Scheme 12 Sythesis of dicarboxyl functionalized telechelic polyethylene by CCG polymerization and the thiol-ene click reaction[63,64]
Scheme 13 Synthesis of carboxy-telechelic poly-(cyclooctene) and polyethylene by a CT-ROMP/hydrogenation approach[69]
Scheme 14 Polycondensation of (a) 1,26-hexacosanedioic acid with its corresponding diol, (b) 1,26-hexacosanedioic acid with 1,12-dodecanediol, (c) 1,26-hexacosanedioic acid with butane-1,4-diol[43]
Scheme 15 Preparation of long-chain α,ω-difunctional compounds from unsaturated fatty acids(x=1, oleic acid as starting material; x=5, erucic acid)[4]
Scheme 16 Synthesis of PA-6.24 and PA-6.34[95]
[1]
Stempfle F, Ortmann P, Mecking S . Chem.Rev, 2016,116:4597.
[2]
Kroha K . Inform, 2004,15:568.
[3]
Mecking S . Angew. Chem. Int. Ed., 2004,43:1078.
[4]
Stempfle F, Quinzler D, Heckler I, Mecking S . Macromolecules, 2011,44:4159.
[5]
Chuit P, Hausser J . Helv.Chim Acta, 1929,12:850.
[6]
Kreuchunas A . J. Am. Chem. Soc., 1953,75:3339.
[7]
Hünig S, Lücke E, Brenninger W . Docosanedioic Acid. Org. Synth., 1973,5:533.
[8]
Hunig S, Lucke E . Chem. Ber. Recl., 1959,92:652.
[9]
Hunig S, Lendle W . Chem. Ber. Recl., 1960,93:913.
[10]
Hunig S, Buysch H J . Chem. Ber. Recl., 1967,100:4010.
[11]
Hunig S, Buysch H J . Chem. Ber. Recl., 1967,100:4017.
[12]
Brooke G M, Burnett S, Mohammed S, Proctor D, Whiting M C . J. Chem. Soc. Perkin Trans., 1996,1:1635.
[13]
Genas M . Angew. Chem. Int. Ed., 1962,74:535.
[14]
Naughton F C . J. Am. Oil Chem. Soc., 1974,51:65.
[15]
Brown A C, Goebel C G, Oehlschlaeger H F, Rolfes R P . US 2813113A, 1957.
[16]
Zibek S, Huf S, Wagner W, Hirth T, Rupp S . Chem. Ing. Tech., 2009,81:1797.
[17]
Schorken U, Kempers P . Eur.J Lipid Sci. Technol., 2009,111:627.
[18]
Abghari A, Madzak C, Chen S . Ferment., 2017,3:40.
[19]
Sathesh-Prabu C, Lee S K . J. Agric. Food Chem., 2015,37:8199.
[20]
Lee H, Sugiharto Y E C, Lee S, Park G, Han C, Jang H, Jeon W, Park H, Ahn J, Kang K, Lee H . Appl. Microbiol. Biotechnol., 2017,16:6333.
[21]
Huf S, Krugener S, Hirth T, Rupp S, Zibek S . Eur.J Lipid Sci. Technol., 2011,113:548.
[22]
Picataggio S, Deanda K, Mielenz J . Mol. Cell. Biol., 1991,11:4333.
[23]
Eschenfeldt W H, Zhang Y Y, Samaha H, Stols L, Eirich L D, Wilson C R, Donnelly M I . Appl. Environ. Microbiol., 2003,69:5992.
[24]
Cao Z, Gao H, Liu M, Jiao P . Biotechnol.J, 2006,1:68.
[25]
Schrewe M, Magnusson A O, Willrodt C, Buhler B, Schmid A . Adv. Synth. Catal., 2011,353:3485.
[26]
Julsing M K, Schrewe M, Cornelissen S, Hermann I, Schmid A, Buhler B . Appl. Environ. Microbiol., 2012,78:5724.
[27]
Lu W H, Ness J E, Xie W C, Zhang X Y, Liu F, Cai J L, Minshull J, Gross R A . J. Am. Chem. Soc., 2010,132:15451.
[28]
Malca S H, Scheps D, Kuhnel L, Venegas-Venegas E, Seifert A, Nestl B M, Hauer B . Chem.Commun, 2012,48:5115.
[29]
Scheps D, Malca S H, Richter S M, Marisch K, Nestl B M, Hauer B . Microb.Biotechnol, 2013,6:694.
[30]
Schrewe M, Ladkau N, Buhler B, Schmid A . Adv. Synth. Catal., 2013,355:1693.
[31]
Song J W, Jeon E Y, Song D H, Jang H Y, Bornscheuer U T, Oh D K, Park J B . Angew. Chem. Int. Ed., 2013,52:2534.
[32]
Werner N, Dreyer M, Wagner W, Papon N, Rupp S, Zibek S . Biotechnol. Lett, 2017,3:429.
[33]
陈远童 ( Chen Y T). 微生物学通报( Microbiology China), 2000,27:309.
[34]
van Dam P B, Boelhouwer C, Mittelmeijer M C . J. Chem. Soc. Chem. Commun., 1972,1221.
[35]
Vandam P B, Mittelmeijer M C, Boelhouwer C . J. Am. Oil Chem. Soc., 1974,51:389.
[36]
Verkuijlen E, Kapteijn F, Mol J C, Boelhouwer C . J. Chem. Soc. Chem. Commun., 1977,198.
[37]
Schwab P, France M B, Ziller J W, Grubbs R H . Angew. Chem. Int. Ed., 1995,34:2039.
[38]
Schwab P, Grubbs R H, Ziller J W . J. Am. Chem. Soc., 1996,118:100.
[39]
Vougioukalakis G C, Grubbs R H . Chem. Rev., 2010,110:1746.
[40]
Scholl M, Ding S, Lee C W, Grubbs R H . Org. Lett., 1999,1:953.
[41]
Garber S B, Kingsbury J S, Gray B L, Hoveyda A H . J. Am. Chem. Soc., 2000,122:8168.
[42]
Grubbs R H, Nguyen S T . US 5728917A, 1998.
[43]
Vilela C, Silvestre A J D, Meier M A R . Macromol. Chem. Phys., 2012,213:2220.
[44]
Ngo H L, Jones K, Foglia T A . J. Am. Oil Chem. Soc., 2006,83:629.
[45]
Ngo H L, Foglia T A . J. Am. Oil Chem. Soc., 2007,84:777.
[46]
Schmidt B . Eur. J. Org. Chem., 2004,1865.
[47]
Schmidt B . J. Mol. Catal. A: Chem., 2006,254:53.
[48]
Dinger M B, Mol J C . Organometallics, 2003,22:1089.
[49]
Dinger M B, Mol J C . Eur. J. Inorg. Chem., 2003,2827.
[50]
Hong S H, Day M W, Grubbs R H . J. Am. Chem. Soc., 2004,126:7414.
[51]
Djigoue G B, Meier M A R . Appl. Catal. A: Gen., 2009,368:158.
[52]
Hong S H, Sanders D P, Lee C W, Grubbs R H . J. Am. Chem. Soc., 2005,127:17160.
[53]
Meyer W H, McConnell A E, Forman G S, Dwyer C L, Kirk M M, Ngidi E L Blignaut A, Saku D, Slawin A M Z . Inorg. Chim.Acta, 2006,359:2910.
[54]
Gimeno N, Formentin P, Steinke J H G, Vilar R . Eur.J. Org. Chem., 2007,918.
[55]
Trzaskowski J, Quinzler D, Bahrle C, Mecking S . Macromol. Rapid Commun., 2011,32:1352.
[56]
Fang H, Zhao C, Kong Q, Zou Z, Chen N . Energy, 2016,116, 177.
[57]
Zhao C, Fang H, Chen S . Biotechnol.Biofuels, 2017,10:202.
[58]
Goldbach V, Falivene L, Caporaso L, Cavallo L, Mecking S . ACS Catal, 2016,6:8229.
[59]
Reed S F . J. Polym. Sci. Part A: Polym. Chem., 1971,9:2147.
[60]
Kanakavel M . Makromol. Chem. Macromol. Chem. Phys., 1987,188:845.
[61]
Schnecko H, Degler G, Dongowski H, Caspary R, Angerer G, Ng T S . Angew. Makromol. Chem., 1978,70:9.
[62]
Xu J T, Dimonie V L, Sudol E D, Elaasser M S . J. Polym. Sci. Part A: Polym. Chem., 1995,33:1353.
[63]
German I, Kelhifi W, Norsic S, Boisson C, D’Agosto F . Angew. Chem. Int. Ed., 2013,52:3438.
[64]
Norsic S, Thomas C D’Agosto F, Boisson C . Angew. Chem. Int. Ed., 2015,54:4631.
[65]
Pitet L M, Zhang J, Hillmyer M A . Dalton Trans., 2013,42:9079.
[66]
Bielawski C W, Grubbs R H . Prog. Polym. Sci., 2007,32:1.
[67]
Tasdelen M A, Kahveci M U, Yagci Y . Prog. Polym. Sci., 2011,36:455.
[68]
冯雨晨 ( Feng Y C), 介素云(Jie S Y), 李伯耿(Li B G) . 化学进展( Progress in Chemistry), 2015,27:1074.
[69]
Pitet L M, Hillmyer M A . Macromolecules, 2011,44:2378.
[70]
Carothers W H . Trans. Faraday Soc., 1936,32:0039.
[71]
Stempfle F, Ortmann P, Mecking S . Macromol. Rapid Commun., 2013,34:47.
[72]
Mutlu H, Hofsass R, Montenegro R E, Meier M A R . RSC Adv., 2013,3:4927.
[73]
Quinzler D, Mecking S . Angew. Chem. Int.Ed., 2010,49:4306.
[74]
Roesle P, Stempfle F, Hess S K, Zimmerer J, Bartulos C R, Lepetit B, Eckert A, Kroth P G, Mecking S . Angew. Chem. Int. Ed., 2014,53:6800.
[75]
Korshak W V, Vinogradova S V . Bull. Acad. Sci. USSR Div. Chem. Sci., 1953,2:995.
[76]
Fuller C S, Frosch C J . J. Am. Chem. Soc., 1939,61:2575.
[77]
Bunn C W . J. Polym. Sci., 1955,16:323.
[78]
Rickert S E, Baer E, Wittmann J C, Kovacs A J . J. Polym. Sci.,Polym. Phys. Ed., 1978,16:895.
[79]
Jimenez-Rodriguez C, Eastham G R, Cole-Hamilton D . J. Inorg. Chem. Commun., 2005,8:878.
[80]
Okumura S, Iwai M, Tominaga Y . Agric. Biol. Chem., 1984,48:2805.
[81]
Mahapatro A, Kumar A, Kalra B, Gross R A . Macromolecules, 2004,37:35.
[82]
Uyama H, Inada K, Kobayashi S . Chem.Lett, 1998,1285.
[83]
Kobayashi S, Uyama H, Suda S, Namekawa S . Chem.Lett, 1997,105.
[84]
Kobayashi S, Uyama H, Namekawa S . Polym. Degrad. Stabil., 1998,59:195.
[85]
Biggs B S, Frosch C J, Erickson R H . Ind. Eng. Chem., 1946,38:1016.
[86]
Aharoni S M . n-Nylons: Their Synthesis, Structure and Properties. Wiley-VCH:Weinheim, 1997.
[87]
Bennett C, Mathias L J . J. Polym. Sci. Part A: Polym. Chem., 2005,43:936.
[88]
Bennett C, Zeng J, Kumar S, Mathias L J . J. Appl. Polym. Sci., 2006,99:2062.
[89]
Nataniel T, Heinrich D . US 7163996B2, 2007.
[90]
Nataniel T, Heinrich D . US 8119251B2, 2012.
[91]
Gavenois J, Mathew A K . US 0052384, 2013.
[92]
Coffman D D, Berchet G J, Peterson W R, Spanagel E W . J. Polym. Sci., 1947,2:306.
[93]
Cui X W, Li W H, Yan D Y, Yuan C M, di Silvestro G . J. Appl. Polym. Sci., 2005,98:1565.
[94]
Huang Y, Li W H, Yan D Y . Polym. Bull., 2002,49:111.
[95]
Ehrenstein M, Dellsperger S, Kocher C, Stutzmann N, Weder C, Smith P . Polymer, 2000,41:3531.
[96]
Ehrenstein M, Smith P, Weder C . Macromol. Chem. Phys., 2003,204:1599.
[97]
Saotome K, Komoto H . J. Polym. Sci. Part A: Polym. Chem., 1966,4:1463.
[98]
Bennett C, Kaya E, Sikes A M, Jarrett W L, Mathias L J . J. Polym. Sci. Part A: Polym. Chem., 2009,47:4409.
[1] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[2] Luyao Deng, Shaolu Li, Yiwen Qin, Yunxia Hu. Structure Tailoring and Surface Modification of Antifouling Thin-Film Composite Polyamide Membrane [J]. Progress in Chemistry, 2020, 32(12): 1895-1907.
[3] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[4] Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*. Polyesters Containing Furan Rings Based on Renewable Resources [J]. Progress in Chemistry, 2018, 30(6): 719-736.
[5] Weijun Huang, Ning Zhu*, Zheng Fang, Kai Guo*. Synthesis of Biobased Furan-Containing Polyamides [J]. Progress in Chemistry, 2018, 30(12): 1836-1843.
[6] Zhaodong Wang, Chuncheng Li*, Yaonan Xiao, Bo Zhang, Zhaodong Wang. Biodegradable Anti-Fouling Materials [J]. Progress in Chemistry, 2017, 29(8): 824-832.
[7] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[8] Wang Zhipeng, Tian Changlin, Zheng Jishen. The Structural Designs and Property Analysis of Polyamide Based Structures as Peptide Secondary Structure Mimics [J]. Progress in Chemistry, 2016, 28(9): 1328-1340.
[9] Li Qizheng, Zhang Guoyi, Yuan Cong, Wei Liuhe, Ma Zhi. Synthesis and Application of Polyolefin/Polyester (Polyether) Copolymers [J]. Progress in Chemistry, 2011, 23(6): 1174-1180.
[10] Jiang Shikun, Wang Pu, Wu Yanling, Zhang Wen. The Role of Aliphatic Chains in Pyrrole-Imidazole Polyamides and Their Conjugates Binding to DNA [J]. Progress in Chemistry, 2011, 23(11): 2339-2352.
[11] Liu Jiyan1,2|Zhang Liming2**. Metal-Free Initiator /Catalyst Systems for the Ring Opening Polymerization of Cyclic Ester Monomers [J]. Progress in Chemistry, 2007, 19(0203): 350-355.
[12] Yu Cuiping 1**,Li Xi1|Shen Zhiquan2. Ring-Opening Homopolymerization of Lactides [J]. Progress in Chemistry, 2007, 19(01): 136-144.
[13] Lu Liping,Zhu Miaoli,Yang Pin**. Progress on Pyrrole-Imidazole Polyamides Specifically Recognizing DNA [J]. Progress in Chemistry, 2004, 16(03): 422-.
[14] Yang Yong,Lü Yijun,Xu Yuanyuan,Xiang Hongwei. Chemical Recycling of Waste Poly (Ethylene Terephthalate) [J]. Progress in Chemistry, 2001, 13(01): 65-.