中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 824-832 DOI: 10.7536/PC170204 Previous Articles   Next Articles

• Review •

Biodegradable Anti-Fouling Materials

Zhaodong Wang, Chuncheng Li*, Yaonan Xiao, Bo Zhang, Zhaodong Wang   

  1. Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21574137,51373186).
PDF ( 1557 ) Cited
Export

EndNote

Ris

BibTeX

Study and development of anti-fouling materials, which can reduce nonspecific adsorption of proteins and attachment and growth of microorganisms, not only largely improve sensitivity of some medical diagnostic equipment, reduce side effects of medical implants, such as inflammation and thrombus, but also can save energy and power that navigation needs. Traditional anti-fouling materials are hydrophilic polymers such as poly(vinyl alcohol), poly(N-vinyl pyrrolidone), poly(2-oxazoline), poly(ethylene glycol) and zwitterionic polymers. Although these materials have good anti-fouling properties, they lack desirable biodegradability as they are based on non-degradable polymer backbones such as poly(acrylic ester) and poly(acrylic amide). Therefore, it is highly desirable to study and develop biodegradable anti-fouling materials. Biodegradable anti-fouling materials can be achieved by introducing anti-fouling functional moieties (hydrophilic polymers or antifoulants) into biodegradable matrixes, such as aliphatic polyesters, aliphatic polycarbonates, polypeptides and polysaccharides. In this review, the progress of biodegradable anti-fouling materials is summarized. Firstly, the harm of biological fouling, the classification, characteristic and existing problem of antifouling materials are introduced. Recent advancement of biodegradable anti-fouling materials is highlighted. The three main mechanism, i.e., spatial exclusion theory, structural similarity theory, and hydration theory, to resist nonspecific adsorption of proteins hydrophilic polymers with different structures (poly(ethylene glycol), zwitterionic polymers, and other hydrophilic polymers) are discussed and compared. The mechanism to resist adsorption of microorganism of anti-foulant is also summed up. Synthesis, structures, properties and their corresponding application fields of of biodegradable anti-fouling materials are critically summarized and commented in detail from hydrophilic polymers with various structures and anti-foulants. Perspective on future research directions of biodegradable anti-fouling materials is also discussed.
Contents
1 Introduction
2 Current research states of biodegradable anti-fouling materials
2.1 Biodegradable anti-fouling materials based on hydrophilic polymers
2.2 Biodegradable anti-fouling materials based on anti-foulants
3 Perspective of biodegradable anti-fouling materials

CLC Number: 

[1] Ma J L, Ma C F, Zhang G Z. Langmuir, 2015, 31:6471.
[2] Cao J, Xie X X, Lu A J, He B, Chen Y W, Gu Z W, Luo X L. Biomaterials, 2014, 35:4517.
[3] Chou Y N, Sun F, Hung H C, Jain P, Sinclair A, Zhang P, Bai T, Chang Y, Wen T C, Yu Q M, Jiang S Y. Acta Biomater., 2016, 40:31.
[4] Bai T, Sun F, Zhang L, Sinclair A, Liu S J, Ella-Menye JR, Zheng Y, Jiang S Y. Angew. Chem. Int. Ed., 2014, 53:12729.
[5] Shao Q, He Y, White AD, Jiang S Y. J. Phys. Chem. B, 2010, 114:16625.
[6] Shao Q, Mi L, Han X, Bai T, Liu S J, Li Y T, Jiang S Y. J. Phys. Chem. B, 2014, 118:6956.
[7] Cao B, Tang Q, Cheng G. J. Biomater. Sci., Polym. Ed., 2014, 25:1502.
[8] Chen S F, Cao Z Q, Jiang S Y. Biomaterials, 2009, 30:5892.
[9] Chien H W, Xu X W, Ella-Menye JR, Tsai W B, Jiang S Y. Langmuir, 2012, 28:17778.
[10] Wang X J, Wu G L, Lu C C, Wang Y N, Fan Y G, Gao H, Ma J B. Colloids Surf. B, 2011, 86:237.
[11] Zhou X, Xie Q Y, Ma C F, Chen Z J, Zhang G Z. Ind. Eng. Chem. Res., 2015, 54:9559.
[12] 刘红艳(Liu H Y),周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11):2187.
[13] Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. J. Biomed. Mater. Res. A, 1992, 26:1543.
[14] Ostuni E, Chapman R G, Liang M N, Meluleni G, Pier G, Ingber D E, Whitesides G M. Langmuir, 2001, 17:6336.
[15] Chen S F, Zheng J, Li L Y, Jiang S Y. J. Am. Chem. Soc., 2005, 127:14473.
[16] Zheng J, Li L Y, Tsao H K, Sheng Y J, Chen S F, Jiang S Y. Biophys. J., 2005, 89:158.
[17] Hower J C, He Y, Jiang S Y. J. Chem. Phys., 2008, 129:215101.
[18] Wu J, Lin W, Wang Z, Chen S. Langmuir, 2012, 28:7436.
[19] Shao Q, Jiang S Y. J. Phys. Chem. B, 2014, 118:7630.
[20] 慈吉良(Ci J H), 康宏亮(Kang H L), 刘晨光(Liu C G), 贺爱华(He A H),刘瑞刚(Liu R G). 化学进展(Progress in Chemistry), 2015, 27(9):1198.
[21] Zhai S Y, Ma Y H, Chen Y Y, Li D, Cao J, Liu Y J, Cai M T, Xie X X, Chen Y W, Luo X L. Polym. Chem., 2014, 5:1285.
[22] Ma W Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y C, Matsuyama H. J. Membr. Sci., 2016, 514:429.
[23] Noguer A C, Olsen S M, Hvilsted S, Kiil S. J. Coating. Tech. Res., 2016, 13:567.
[24] Ochs C J, Such G K, Stadler B, Caruso F. Biomacromolecules, 2008, 9:3389.
[25] Grafahrend D, Heffels K H, Beer M V, Gasteier P, Moller M, Boehm G, Dalton P D, Groll J. Nat. Mater., 2011, 10:67.
[26] Gagliardi M, Michele F D, Mazzolai B, Bifone A. J. Polym. Res., 2015, 22:17.
[27] Wang Y P, Yan L S, Li B, Qi Y X, Xie Z G, Jing X B, Chen X S, Huang Y B. Macromol. Biosci., 2015, 15:1304.
[28] Xu J B, Fan X L, Yang J X, Ma C F, Ye X D, Zhang G Z. Colloids Surf. B, 2014, 116:531.
[29] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22:920.
[30] Yan M Q, Yang H J, Zhang G Z. Mater. Sci. Eng. C, 2015, 51:189.
[31] Cao J, Xiu K M, Zhu K, Chen Y W, Luo X L. J. Biomed. Mater. Res. Part A, 2012, 100A:2079.
[32] Cao J, Zhai S Y, Li C L, He B, Lai Y S, Chen Y W, Luo X L, Gu Z W. J. Biomed. Nanotechnol., 2013, 9:1847.
[33] Cao Z Q, Yu Q M, Xue H, Cheng G, Jiang S Y. Angew. Chem. Int. Ed., 2010, 49:3771.
[34] Chan J M, Zhang L F, Yuet K P, Liao G, Rhee J W, Langer R. Biomaterials, 2009, 30:1627.
[35] Watanabe J, Nederberg F, Atthoff B, Bowden T, Hilborn J, Ishihara K. Mater. Sci. Eng., 2007, C27:227.
[36] Nederberg F, Bowden T, Hilborn J. Macromolecules, 2004, 37:954.
[37] Welch K, Nederberg F, Bowden T, Hilborn J, Strømme M. Langmuir, 2007, 23:10209.
[38] Ye S H, Hong Y, Sakaguchi H, Shankarraman V, Luketich S K, Amore A D, Wagner W R. ACS Appl. Mater. Interfaces, 2014, 6:22796.
[39] Lu C C, Liu N, Gu X, Li B Q, Wang Y N, Gao H, Ma J B, Wu G L. J. Polym. Res., 2014, 21:578.
[40] Sun F, Ella-Menye J, Galvan D D, Bai T, Hung H C, Chou Y N, Zhang P, Jiang S Y, Yu Q M. ACS Nano, 2015, 9:2668.
[41] Lu C C, Zhao D P, Wang S, Wang Y M, Wang Y N, Gao H, Ma J B, Wu G L. RSC Adv., 2014, 4:20665.
[42] Gudipati C S, Greenleaf C M, Johnson J A, Pryoncpan P, Wooley K L. J. Polym. Sci. Part A:Polym. Chem., 2004, 42:6193.
[43] Ma C F, Xu L G, Xu W T, Zhang G Z. J. Mater. Chem. B, 2013, 1:3099.
[44] Fay F, Renard E, Langlois V, Linossier I, Vallee-Rehel K. Eur. Polym. J., 2007, 43:4800.
[45] Fay F, Linossier I, Langlois V, Renard E, Vallee-Re K. Biomacromolecules, 2006, 7:851.
[46] Yao J H, Chen S S, Ma C F, Zhang G Z. J. Mater. Chem. B, 2014, 2:5100.
[47] Carteau D, Vallée-Réhel K, Linossier I, Quiniou F, Davy R, Compère C, Delbury M, Fay F. Prog. Org. Coat., 2014, 77:485.
[48] Fay F, Linossier I, Langlois V, Vallee-Rehel K. Biomacromolecules, 2007, 8:1751.
[49] Yi J, Huang C S, Zhuang H Y, Gong H, Zhang C Y, Ren R T, Ma Y P. Prog. Org. Coat., 2015, 87:161.
[50] Yi J, Ren R T, Huang C S, Zhang C Y, Ma Y P. J. Coat. Technol. Res., 2015, 12:525.
[51] Xie Q Y, Ma C F, Liu C, Ma J L, Zhang G Z. ACS Appl. Mater. Interfaces, 2015, 7:21030.
[52] Ma J L, Ma C F, Yang Y, Xu W T, Zhang G Z. Ind. Eng. Chem. Res., 2014, 53:12753.
[1] Tian Miaomiao, Li Xuemei, Yin Yong, He Tao, Liu Jindun. Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation [J]. Progress in Chemistry, 2015, 27(8): 1033-1041.
[2] Yao Xiang Tuo Xinlin Wang Xiaogong. Preparing Biodegradable Polyurethane Porous Scaffold for Tissue Engineering Application [J]. Progress in Chemistry, 2009, 21(0708): 1546-1552.
[3] Lu Dehuai|Zhang Xiaowei|Zhou Tianhong|Ren Zongli|Wang Shoufeng|Lei Ziqiang**. Biodegradable Poly(lactic acid) Copolymers [J]. Progress in Chemistry, 2008, 20(0203): 339-350.
[4] Yu Cuiping 1**,Li Xi1,Niu Junfeng 3,Shen Zhiquan2 . The Ring-Opening Homopolymerizations of Trimethylene Carbonate and 2,2-Dimethyltrimethylene Carbonate [J]. Progress in Chemistry, 2007, 19(06): 959-972.
[5] Liu Jiyan1,2|Zhang Liming2**. Metal-Free Initiator /Catalyst Systems for the Ring Opening Polymerization of Cyclic Ester Monomers [J]. Progress in Chemistry, 2007, 19(0203): 350-355.
[6] Yu Cuiping 1**,Li Xi1|Shen Zhiquan2. Ring-Opening Homopolymerization of Lactides [J]. Progress in Chemistry, 2007, 19(01): 136-144.
[7] Cui Junfeng,Yin Yuji,He Shulan,Yao Kangde**. Biodegradable Polymeric Scaffolds for Bone Tissue Engineering [J]. Progress in Chemistry, 2004, 16(02): 299-.
[8] Zhang Guodong,Yang Jiyuan,Feng Xinde,Gu Zhongwei. Progress in Study of Polylactides [J]. Progress in Chemistry, 2000, 12(01): 89-.
Viewed
Full text


Abstract

Biodegradable Anti-Fouling Materials