中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 710-718 DOI: 10.7536/PC171001 Previous Articles   Next Articles

• Review •

Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones

Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key R & D Program of China(No. 2016YFC1100801).
PDF ( 1049 ) Cited
Export

EndNote

Ris

BibTeX

Aliphatic polyesters are a class of biodegradable, biocompatible, and environmentally friendly polymers, which have been widely used in many fields, such as packaging, agricultural film, biomedical materials, etc. In comparison with the polycondensation reaction, the ring-opening polymerization (ROP) of lactones could be conducted in mild conditions with no small-molecular byproducts formed in the polymerization process. In addition, ROP of lactones is suitable to synthesize the aliphatic polyesters with high molecular weight and narrow molecular weight distribution. At present, the aliphatic polyesters are usually synthesized by the coordination polymerization with the metal complexes as catalysts. The as-prepared polymers inevitably contain a small amount of metal ions that are difficult to be removed completely, which limits the applications of aliphatic polyesters in the biomedical fields. Due to the low cost, ease of preparation, and low toxicity of non-metallic organocatalysts, the ROP of lactones catalyzed by non-metallic organocatalysts has drawn much attention in recent years. According to the catalytic mechanisms, this paper will focus on the non-metallic organocatalysts with the hydrogen-bonding interactions and review the recent research progress on the hydrogen bonding-based non-metallic organocatalysts used for ROP of lactones.
Contents
1 Introduction
2 Monofunctional hydrogen-bonding catalysts
2.1 DBU
2.2 MTBD
2.3 Phosphazenes
3 Bifunctional hydrogen-bonding catalysts
3.1 4-Dimethylaminopyridine
3.2 Thiourea-amine catalyst
3.3 1,5,7-Triazabicyclo[4.4.0] dec-5-ene
3.4 Other bifunctional catalysts
4 Combined catalyst systems
4.1 Combined neutral catalyst systems
4.2 Combined ionic catalyst systems
5 Conclusion

CLC Number: 

[1] Gross R A, Kalra B. Science, 2002, 297(5582):803.
[2] Albertsson A C, Varma I K. Biomacromolecules, 2003, 4(6):1466.
[3] Mecking S. Angew. Chem. Int. Ed., 2004, 43(9):1078.
[4] Luckachan G E, Pillai C K S. J. Polym. Environ., 2011, 19(3):637.
[5] Zhu Y Q, Romain C, Williams C K. Nature, 2016, 540(7633):354.
[6] Tong R. Ind. Eng. Chem. Res., 2017, 56(15):4207.
[7] Lecomte P, Jerome C. Adv. Polym. Sci., 2012, 245:173.
[8] Nuyken O, Pask S D. Polymers, 2013, 5(2):361.
[9] Dutta S, Hung W C, Huang B H, Lin C C. Adv. Polym. Sci., 2012, 245:219.
[10] Han L, Shan G, Bao Y, Pan P. J. Phys. Chem. B, 2015, 119(44):14270.
[11] Li J, Deng Y, Jie S, Li B G. J. Organomet. Chem., 2015, 797:76.
[12] Wang R B, Zhang J W, Yin Q, Xu Y X, Cheng J J, Tong R. Angew. Chem. Int. Ed., 2016, 55(42):13010.
[13] Rosen T, Goldberg I, Venditto V, Kol M. J. Am. Chem. Soc., 2016, 138(37):12041.
[14] Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Chem. Sci., 2017, 8(8):5476.
[15] Bakewell C, Cao T P A, Le Goff X F, Long N J, Auffrant A, Williams C K. Organometallics, 2013, 32(5):1475.
[16] Li L, Liu B, Liu D T, Wu C J, Li S H, Liu B, Cui D M. Organometallics, 2014, 33(22):6474.
[17] Dove A P. ACS Macro Lett., 2012, 1(12):1409.
[18] Jeffrey G A. An Introduction to Hydrogen Bonding. Oxford University Press, 1997.
[19] Gilli G, Gilli P. The Nature of the Hydrogen Bond. Oxford University Press, 2009.
[20] Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5):2093.
[21] Ottou W N, Sardon H, Mecerreyes D, Vignolle J, Taton D. Prog. Polym. Sci., 2016, 56:64.
[22] Connor E F, Nyce G W, Myers M, Mock A, Hedrick J L. J. Am. Chem. Soc., 2002, 124(6):914.
[23] Kamber N E, Jeong W, Gonzalez S, Hedrick J L, Waymouth R M. Macromolecules, 2009, 42(5):1634.
[24] Myers M, Connor E F, Glauser T, Mock A, Nyce G, Hedrick J L. J. Polym. Sci. Part A:Polym. Chem., 2002, 40(7):844.
[25] Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25):8574.
[26] Carafa M, Mesto E, Quaranta E. Eur. J. Org. Chem., 2011, (13):2458.
[27] Brown H A, De Crisci A G, Hedrick J L, Waymouth R M. ACS Macro Lett., 2012, 1(9):1113.
[28] Sherck N J, Kim H C, Won Y Y. Macromolecules, 2016, 49(13):4699.
[29] Kaljurand I, Kutt A, Soovali L, Rodima T, Maemets V, Leito I, Koppel I A. J. Org. Chem., 2005, 70(3):1019.
[30] Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules, 2007, 40(12):4154.
[31] Zhang L, Nederberg F, Messman J, Pratt R C, Hedrick J L, Wade C G. J. Am. Chem. Soc., 2007, 129(42):12610.
[32] Helou M, Miserque O, Brusson J M, Carpentier J F, Guillaume S M. Chem. Eur. J., 2010, 16(46):13805.
[33] Yang H J, Yan M Q, Pispas S, Zhang G Z. Macromol. Chem. Phys., 2011, 212(23):2589.
[34] Memeger W, Campbell G C, Davidson F. Macromolecules, 1996, 29(20):6475.
[35] Illy N, Boileau S, Buchmann W, Penelle J, Barbier V. Macromolecules, 2010, 43(21):8782.
[36] Hong M, Chen E Y X. Angew. Chem. Int. Ed., 2016, 55(13):4188.
[37] Jaffredo C G, Carpentier J F, Guillaume S M. Macromol. Rapid Comm., 2012, 33(22):1938.
[38] Nederberg F, Connor E F, Moller M, Glauser T, Hedrick J L. Angew. Chem. Int. Ed., 2001, 40(14):2712.
[39] Bonduelle C, Martin-Vaca B, Cossio F P, Bourissou D. Chem. Eur. J., 2008, 14(17):5304.
[40] Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2005, 127(40):13798.
[41] Simon L, Goodman J M. J. Org. Chem., 2007, 72(25):9656.
[42] Chuma A, Horn H W, Swope W C, Pratt R C, Zhang L, Lohmeijer B G G, Wade C G, Waymouth R M, Hedrick J L, Rice J E. J. Am. Chem. Soc., 2008, 130(21):6749.
[43] Pratt R C, Lohmeijer B G G, Long D A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2006, 128(14):4556.
[44] Kiesewetter M K, Scholten M D, Kirn N, Weber R L, Hedrick J L, Waymouth R M. J. Org. Chem., 2009, 74(24):9490.
[45] Kricheldorf H R, Dunsing R. Makromol. Chem., 1986, 187(7):1611.
[46] Susperregui N, Delcroix D, Martin-Vaca B, Bourissou D, Maron L. J. Org. Chem., 2010, 75(19):6581.
[47] Delcroix D, Couffin A, Susperregui N, Navarro C, Maron L, Martin-Vaca B, Bourissou D. Polym. Chem., 2011, 2(10):2249.
[48] Rostami A, Sadeh E, Ahmadi S. J. Polym. Sci. Part A:Polym. Chem., 2017, 55(15):2483.
[49] Specklin D, Hild F, Chen L, Thévenin L, Munch M, Dumas F, Le Bideau F, Dagorne S. ChemCatChem, 2017, 9:1.
[50] Coady D J, Engler A C, Horn H W, Bajjuri K M, Fukushima K, Jones G O, Nelson A, Rice J E, Hedrick J L. ACS Macro Lett., 2012, 1(1):19.
[51] Kazakov O I, Kiesewetter M K. Macromolecules, 2015, 48(17):6121.
[52] Spink S S, Kazakov O I, Kiesewetter E T, Kiesewetter M K. Macromolecules, 2015, 48(17):6127.
[53] Fastnacht K V, Spink S S, Dharmaratne N U, Pothupitiya J U, Datta P P, Kiesewetter E T, Kiesewetter M K. ACS Macro Lett., 2016, 5(8):982.
[54] Dharmaratne N U, Pothupitiya J U, Bannin T J, Kazakov O I, Kiesewetter M K. ACS Macro Lett., 2017, 6(4):421.
[55] Coulembier O, Sanders D R, Nelson A, Hollenbeck A N, Horn H W, Rice J E, Fujiwara M, Dubois P, Hedrick J L. Angew. Chem. Int. Ed., 2009, 48(28):5170.
[56] Alba A, Schopp A, Delgado A P D S, Cherif-Cheikh R, Martin-Vaca B, Bourissou D. J. Polym. Sci., Part A:Polym. Chem., 2010, 48(4):959.
[57] Liu J, Chen C, Li Z, Wu W, Zhi X, Zhang Q, Wu H, Wang X, Cui S, Guo K. Polym. Chem., 2015, 6(20):3754.
[58] Nickerson D M, Angeles V V, Auvil T J, So S S, Mattson A E. Chem. Commun., 2013, 49(39):4289.
[59] Xu S, Sun H, Liu J, Xu J, Pan X, Dong H, Liu Y, Li Z, Guo K. Polym. Chem., 2016, 7(44):6843.
[60] Makiguchi K, Kikuchi S, Yanai K, Ogasawara Y, Sato, S I, Satoh T, Kakuchi T. J. Polym. Sci., Part A:Polym. Chem., 2014, 52(7):1047.
[61] Wang X, Cui S D, Li Z J, Kan S L, Zhang Q G, Zhao C X, Wu H, Liu J J, Wu W Z, Guo K. Polym. Chem., 2014, 5(20):6051.
[62] Wang X, Liu J Q, Xu S Q, Xu J X, Pan X F, Liu J J, Cui S D, Li Z J, Guo K. Polym. Chem., 2016, 7(41):6297.
[63] Zhang D W, Jardel D, Peruch F, Calin N, Dufaud V, Dutasta J P, Martinez A, Bibal B. Eur. J. Org. Chem., 2016, (8):1619.
[64] Zhang X Y, Jones G O, Hedrick J L, Waymouth R M. Nat. Chem., 2016, 8(11):1047.
[65] Lin B H, Waymouth R M. J. Am. Chem. Soc., 2017, 139(4):1645.
[1] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[2] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[3] Han Gao, Jun Xu, Xin Hu, Ning Zhu, Kai Guo. Synthesis of Poly(Ester Amide) [J]. Progress in Chemistry, 2018, 30(11): 1634-1645.
[4] Zhaodong Wang, Chuncheng Li*, Yaonan Xiao, Bo Zhang, Zhaodong Wang. Biodegradable Anti-Fouling Materials [J]. Progress in Chemistry, 2017, 29(8): 824-832.
[5] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[6] Wang Sai, Wu Bin, Duan Junfei, Fang Jianglin*, Chen Dongzhong. Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators [J]. Progress in Chemistry, 2014, 26(01): 125-139.
[7] Xu Rong, Chen Chunxia. Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Organocatalyst [J]. Progress in Chemistry, 2012, 24(08): 1519-1525.
[8] Huang Cuiying, Li Yang, Wang Changsheng. Accurate and Rapid Calculation of the Hydrogen Bond Strengths and Hydrogen Bonding Potential Energy Curves for the Hydrogen-Bonded Complexes Containing Peptide Amides and/or Nucleic Acid Bases [J]. Progress in Chemistry, 2012, 24(06): 1214-1226.
[9] Li Guang, Bai Ruke. Synthesis of Azide Polymers [J]. Progress in Chemistry, 2011, 23(8): 1692-1699.
[10] Li Qizheng, Zhang Guoyi, Yuan Cong, Wei Liuhe, Ma Zhi. Synthesis and Application of Polyolefin/Polyester (Polyether) Copolymers [J]. Progress in Chemistry, 2011, 23(6): 1174-1180.
[11] Li Zhan ting. Hydrogen bonded arylamide foldamers: From conformational control to functional evolution [J]. Progress in Chemistry, 2011, 23(01): 1-12.
[12] . Synthesis of Well-Defined Polymers via Mechanism Transformation between Living Ring-Opening Polymerization and Controlled Free Radical Polymerization [J]. Progress in Chemistry, 2010, 22(09): 1799-1807.
[13] Zhang Zhiguo**,Yin Hong. Ring-Opening Polymerization Kinetics of Ethylene Oxide and Propylene Oxide [J]. Progress in Chemistry, 2007, 19(04): 575-582.
[14] Liu Jiyan1,2|Zhang Liming2**. Metal-Free Initiator /Catalyst Systems for the Ring Opening Polymerization of Cyclic Ester Monomers [J]. Progress in Chemistry, 2007, 19(0203): 350-355.
[15] Zhang Zhiguo**,Yin Hong. Ring-Opening Polymerization of Ethylene Oxide and Propylene Oxide [J]. Progress in Chemistry, 2007, 19(01): 145-152.