中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 947-957 DOI: 10.7536/PC171103 Previous Articles   Next Articles

• Review •

Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction

Xianwei Lv1,2, Zhongpan Hu2, Hui Zhao2, Yuping Liu1*, Zhongyong Yuan1,2*   

  1. 1. Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China;
    2. National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21421001, 21573115) and the Natural Science Foundation of Tianjin(No. 17JCYBJC17100).
PDF ( 1617 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen energy, a zero-carbon emission energy, is mainly produced by water electrolysis. Currently, precious metal Pt is the state-of-the-art electrocatalyst for hydrogen evolution reaction(HER). However, the high cost and scarcity of Pt limit its wide application. Thus developing non-noble-metal electrocatalysts with high activity and excellent durability in hydrogen evolution reaction is still a great challenge. Self-supporting transition metal phosphides have excellent catalytic activity and stability, which are expected to be an alternative to precious metal Pt-based catalyst for HER. In this paper, the research progress of self-supporting transition metal phosphides is presented in detail. The advantages and mechanism of these electrocatalysts are discussed emphatically:(1) The self-supporting substrate's 3D integrated frame with strong conductivity provides lots of channels for transferring electron, thereby accelerating the catalytic reaction process.(2) Comparing self-supporting catalysts with others, its greater specific surface and more active sites are critical for catalytic reaction.(3) Self-supporting transition metal phosphides can be directly used as cathode for HER, and avoid the trouble that catalysts easily fall off from the glass carbon electrode in traditional coating method. Finally, the prospective and challenges for future development of self-supporting transition metal phosphides for water electrolysis are summarized.
Contents
1 Introduction
2 Self-supporting transition metal phosphide electrocatalysts
2.1 Self-supporting cobalt phosphide catalysts
2.2 Self-supporting nickel phosphide catalysts
2.3 Self-supporting molybdenum phosphide catalysts
2.4 Self-supporting copper phosphide and iron phosphide catalysts
2.5 Self-supporting tungsten phosphide catalysts
2.6 Self-supporting bimetallic phosphide catalysts
3 Conclusion and outlook

CLC Number: 

[1] Turner J A. Science, 2004, 305:972.
[2] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110:6446.
[3] Shi H, Liang H, Ming F, Wang Z. Angew. Chem. Int. Ed., 2016, 129:588.
[4] Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2015, 54:4646.
[5] Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44:5148.
[6] Trasatti. Encyclopedia of Electrochemical Power Sources. Amsterdam:Elsevier, 2009. 41.
[7] Merki D, Hu X. EnergyEnviron. Sci., 2011, 4:3878.
[8] Chen M, Qi J, Zhang W, Cao R. Chem. Commun., 2017, 53:5507.
[9] Wang S, Zhang L, Li X, Li C, Zhang R, Zhang Y, Zhu H. Nano Res., 2017, 10:415.
[10] Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Adv. Funct. Mater., 2016, 26:3314.
[11] Liu T, Yan X, Xi P, Chen J, Qin D, Shan, D, Lu X. INT. J. Hydrogen Energy, 2017, 42:14124.
[12] Ledendecker M, Krick Calderón S, Papp C, Steinrück H P, Antonietti M, Shalom M. Angew. Chem. Int. Ed., 2015, 127:12538.
[13] Du H, Liu Q, Cheng N, Asiri A M, Sun X, Li C M. J. Mater. Chem. A, 2014, 2:14812.
[14] Jin Z, Li P, Xiao D. Green Chem., 2016, 18:1459.
[15] Wang J, Yang W, Liu J. J. Mater. Chem. A, 2016, 4:4686.
[16] Li Q, Xing Z, Asiri A M, Jiang P, Sun X. Int. J. Hydrogen Energy, 2014,39:16806.
[17] Yu X, Zhang S, Li C, Zhu C, Chen Y, Gao P, Zhang X. Nanoscale, 2016, 8:10902.
[18] Wu Z, Wang J, Zhu J, Guo J, Xiao W, Xuan C, Wang D. Electrochimica Acta, 2017, 232:254.
[19] Wang D, Shen Y, Zhang X, Wu Z. J. Mater. Sci., 2017, 52:3337.
[20] Ojha K, Sharma M, Kolev H, Ganguli A K. Catal. Sci. Technol., 2017, 7:668.
[21] Zhu W, Tang C, Liu D, Wang J, Asiri A M, Sun X. J. Mater. Chem. A, 2016, 4:7169.
[22] Han A, Zhang H, Yuan R, Ji H, Du P. ACS Appl. Mater. Interfaces, 2017, 9:2240.
[23] Liu R, Gu S, Du H, Li C M. J. Mater. Chem. A, 2014, 2:17263.
[24] Yang X, Lu A Y, Zhu Y, Min S, Hedhili M N, Han Y, Li L J. Nanoscale, 2015, 7:10974.
[25] McEnaney J M, Crompton J C, Callejas J F, Popczun E J, Read C G, Lewis N S, Schaak R E. Chem. Commun., 2014, 50:11026.
[26] Björketun M E, Bondarenko A S, Abrams B L, Chorkendorff I, Rossmeisl J. Phys. Chem. Chem. Phys., 2010, 12:10536.
[27] Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. J. Electrochem. Soc., 2005, 152:J23.
[28] Greeley J, Nørskov J K, Kibler L A, El-Aziz A M, Kolb D M. ChemPhysChem, 2006, 7:1032.
[29] Kang D, Kim T W, Kubota S R, Cardiel A C, Cha H G, Choi K S. Chem. Rev., 2015, 115:12839.
[30] Parsons R. Trans. Faraday Soc., 1958, 54:1053.
[31] Zhao H, Yuan Z Y. Catal. Sci. Technol., 2017, 7:330.
[32] Liu Q, Asiri A M, Sun X. Electrochem. Commun., 2014, 49:21.
[33] Liu Y, Ren L, Zhang Z, Qi X, Li H, Zhong J. Sci. Rep., 2016, 6:22516.
[34] Luo Q, Peng M, Sun X, Asiri A M. Catal. Sci. Technol., 2016, 6:1157.
[35] Popczun E J, Read C G, Roske C W, Lewis N S, Schaak R E. Angew. Chem. Int. Ed., 2014, 126:5531.
[36] Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Adv. Funct. Mater., 2015, 25:7337.
[37] Ren J T, Yuan G G, Weng C C, Yuan Z Y. Electrochim. Acta, 2018, 261:454.
[38] Jiang N, You B, Sheng M, Sun Y. Angew. Chem. Int. Ed., 2015, 127:6349.
[39] Yan X Y, Devaramani S, Chen J, Shan D L, Qin D D, Ma Q, Lu X Q. New J. Chem., 2017, 41:2436.
[40] Li W, Gao X, Wang X, Xiong D, Huang P P, Song W G, Liu L. J. Power Sources, 2016, 330:156.
[41] Bai N, Li Q, Mao D, Li D, Dong H. ACS Appl. Mater. Interfaces, 2016, 8:29400.
[42] Guo P, Wu Y X, Lau W M, Liu H, Liu L M. Int. J. Hydrogen Energy, 2017, 42:26995.
[43] Yuan C Z, Zhong S L, Jiang Y F, Yang Z K, Zhao Z W, Zhao S J, Xu A W. J. Mater. Chem. A, 2017, 5:10561.
[44] Yang L, Qi H, Zhang C, Sun X. Nanotechnology, 2016, 27:23LT01.
[45] Huang J, Li Y, Xia Y, Zhu J, Yi Q, Wang H, Zou G. Nano Res., 2017, 10:1010.
[46] Gu S, Du H, Asiri A M, Sun X, Li C M. Phys. Chem. Chem. Phys., 2014, 16:16909.
[47] Niu Z, Jiang J, Ai L. Electrochem. Commun., 2015, 56:56.
[48] Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri A M, Sun X. Angew. Chem. Int. Ed., 2014, 126:6828.
[49] Liu P, Rodriguez J A, Asakura T, Gomes J, Nakamura K. J. Phys. Chem. B, 2005, 109:4575.
[50] Wang X, Li W, Xiong D, Petrovykh D Y, Liu L. Adv. Funct. Mater., 2016, 26:4067.
[51] Ren J, Hu Z, Chen C, Liu Y, Yuan Z. J. Energy Chem., 2017, 26:1196.
[52] Wang X, Kolen'ko Y V, Bao X Q, Kovnir K, Liu L. Angew. Chem. Int. Ed., 2015, 54:8188.
[53] Cai Z X, Song X H, Wang Y R,Chen X. ChemElectroChem, 2015, 2:1665.
[54] Wu R, Dong Y, Jiang P, Wang G, Chen Y,Wu X. Prog. Nat. Sci., 2016, 26:303.
[55] Jiang P, Liu Q, Sun X. Nanoscale, 2014, 6:13440.
[56] Liu Q, Gu S, Li C M. J. Power Sources, 2015, 299:342.
[57] Xiao J, Lv Q, Zhang Y, Zhang Z, Wang S. RSC Adv., 2016, 6:107859.
[58] Lin S H, Kuo J L. Phys. Chem. Chem. Phys., 2015, 17:29305.
[59] Pu Z, Wang M, Kou Z, Amiinu I S, Mu S. Chem. Commun., 2016, 52:12753.
[60] Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y. Chem. Sci., 2016, 7:3399.
[61] Lu C, Tranca D, Zhang J, Rodr Díguez-Hernández F, Su Y, Zhuang X, Feng X. ACS Nano, 2017, 11:3933.
[62] Zou L, Qiao Y, Gu S, Huang Y, Zhong C, Long Z E. J. Alloy Compd., 2017, 712:103.
[63] Kokko M, Bayerköhler F, Erben J, Zengerle R, Kurz P, Kerzenmacher S. Appl. Energy, 2017, 190:1221.
[64] Zhang L F, Ou G, Gu L, Peng Z J, Wang L N, Wu H. RSC Adv., 2016, 6:107158.
[65] Huang Z, Luo W, Ma L, Yu M, Ren X, He M, Amine K. Angew. Chem. Int. Ed., 2015, 127:15396.
[66] Liu N, Yang L, Wang S, Zhong Z, He S, Yang X, Tang Y. J. Power Sources, 2015, 275:588.
[67] Deng S, Zhong Y, Zeng Y, Wang Y, YaoZ, Yang F, Tu J. Adv. Mater., 2017, 29:1700748.
[68] Lai F, Yong D, Ning X, Pan B, Miao Y E, Liu T. Small, 2017, 13:1602866.
[69] Zhuang M, Ding Y, Ou X,Luo Z.Nanoscale, 2017, 9:4652.
[70] Dai C, Zhou Z, Tian C, Li Y, Yang C, Gao X, Tian X. J.Phys. Chem. C, 2017, 121:1974.
[71] Vrubel H, Hu X.Angew. Chem. Int. Ed., 2012, 124:12875.
[72] Song Y J, Yuan Z Y. Electrochim.Acta, 2017, 246:536.
[73] Deng C, Xie J, Xue Y, He M, Wei X, Yan Y M. RSC Adv., 2016, 6:68568.
[74] Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Yan Y M. J. Mater. Chem. A, 2016, 4:59.
[75] Pu Z, Wei S, Chen Z, Mu S. Appl. Catal. B, 2016, 196:193.
[76] Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Angew. Chem. Int. Ed., 2014, 53:9577.
[77] Shi Y, Zhang B. Chem. Soc. Rev., 2016, 45:1529.
[78] Safizadeh F, Ghali E, Houlachi G. Int. J. Hydrogen Energy, 2015, 40:256.
[79] Read C G, Callejas J F, Holder C F,Schaak R E. ACS Appl. Mater. Interfaces, 2016, 8:12798.
[80] Hou C C, Chen Q Q, Wang C J, Liang F, Lin Z, Fu W F, Chen Y. ACS Appl. Mater. Interfaces, 2016, 8:23037.
[81] Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. ACS Catal., 2014, 4:4065.
[82] Pu Z, Amiinu I S, Mu S. Energy Technol., 2016, 4:1030.
[83] Pi M, Wu T, Zhang D, Chen S, Wang S. Nanoscale, 2016, 8:19779.
[84] Jiang P, Liu Q, Liang Y, Tian J, Asiri A M, Sun X. Angew. Chem. Int. Ed., 2014, 53:12855.
[85] Zhang R, Tang C, Kong R, Du G, Asiri A M, Chen L, Sun X. Nanoscale, 2017, 9:4793.
[86] Lado J L, Wang X, Paz E, Carbó-Argibay E, Guldris N, Rodríguez-Abreu C, Kolen'ko Y V. ACS Catal., 2015, 5:6503.
[87] Ma Z, Li R, Wang M, Meng H, Zhang F, Bao X Q, Wang X. Electrochim. Acta, 2016, 219:194.
[88] Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlögl U, Alshareef H N. Nano Lett., 2016, 16:7718.
[89] Tang C, Zhang R, Lu W, He L, Jiang X, Asiri A M, Sun X. Adv. Mater., 2017, 29:1602441.
[1] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[2] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[3] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[4] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.