中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2215-2244 DOI: 10.7536/PC201128 Previous Articles   Next Articles

• Review •

Current Status of Hydrogen Production in China

Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu()   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Contact: Bo Yu
  • Supported by:
    the National Natural Science Foundation of China(91645126); the National Natural Science Foundation of China(21273128); the Tsinghua University Initiative Scientific Research Program(2018Z05JZY010); the Tsinghua-MIT-Cambridge Low Carbon Energy University Alliance Seed Fund Program(201LC004)
Richhtml ( 252 ) PDF ( 3028 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen energy is an efficient and clean secondary energy that plays an irreplaceable role in realizing "carbon neutral". With the continuous expansion of hydrogen production scale and the reduction in hydrogen production cost, hydrogen energy will become a competitive alternative energy, which can further promote the transformation of China’s energy structure, reduce carbon emissions, and improve China’s energy security and resilience. China is the world’s largest producer of hydrogen, and there are three main industrial hydrogen production routes in China: fossil fuel reforming, industrial by-product hydrogen and the electrolysis of water. Other new hydrogen production technologies, such as hydrogen production from solar photolysis, hydrogen production from biomass, hydrogen production from thermochemical circulation, etc., have attracted extensive attention and investigations. In addition, hydrogen production system is complex, which is difficult for modeling and optimization. Accordingly, artificial intelligence (AI) shows unique advantages in the prediction, evaluation and optimization for hydrogen production system, which is promising and attractive. Based on the recent progress, this article summarizes several critical hydrogen production technologies into four main categories, and further proposes some perspectives for the future development of hydrogen supply structure in China. Finally, this article also reviewes the latest application of artificial intelligence in hydrogen production system to provide new insights for the development of hydrogen production technology in China.

Contents

1 Introduction

2 Hydrogen production from conventional fossil fuel reforming

2.1 Hydrogen production from coal

2.2 Hydrogen production from natural gas

3 Industrial by-product hydrogen

3.1 Pressure swing adsorption

3.2 Low temperature separation

3.3 Membrane separation

3.4 Metal hydride separation

4 Hydrogen production from water electrolysis of clean energy

4.1 AEC

4.2 PEMEC

4.3 SOEC

5 Hydrogen production from other new technologies

5.1 Hydrogen production from solar photolysis of water

5.2 Hydrogen production from biomass fermentation

5.3 Hydrogen production from thermochemical conversion of biomass

5.4 Hydrogen production from thermochemical cycle

6 Comparison of different hydrogen production methods

7 Application of artificial intelligence in hydrogen production system

8 Conclusion and outlook

Fig.1 Comparison of hydrogen energy industry chain at home and abroad
Table 1 The main recation of coal gasification to produce hydrogen
Fig.2 The process of coal gasification to produce hydrogen[15]
Table 2 Basic information of four common gasifiers
Table 3 Comparison of main characteristics of several typical hydrogen production reactors from natural gas[37]
Table 4 The sequence of catalyst activity obtained by experimental or theoretical calculation under different conditions
Fig.3 The number of the by-product hydrogen from coke enterprises and chlor-alkali industry in China[61]
Table 5 The composition of different by-product hydrogen sources[62⇓⇓~65]
Fig.4 Gas film separation process and mechanism: (a) diffusion process; (b) microporous diffusion mechanism; (c) solution-diffusion mechanism
Table 6 Comparison of different indicators of different hydrogen separation methods[63,87]
Fig.5 AEC electrolysis principle[104]. Copyright 2012, IEEE
Fig.6 The relationship between electrolytic temperature and electrolytic voltage[99]. Copyright 2009, Elsevier
Table 7 Calculation forms and meanings of different expressions of electrolytic efficiency[99]
Table 8 Electrolytic parameters of different hydrogen electrode materials with current density of 100 mA/m2
Fig.7 Relationship curve of superpotential with current density of different hydrogen electrode & oxygen electrode materials. (a), (b): Hydrogen electrode; (c), (d): oxygen electrode; (a), (c): T=30 ℃; SS316l:Stainless steel (Cr17Ni12Mo2) disk electrode; Ra-Ni:Raney Ni (Raney Ni, porous nickel with high internal surface area); Electrolyte solution:KOH, 6 mol/L[106]
Fig.8 Electrolysis principle of PEMEC[104]. Copyright 2012, IEEE
Fig.9 Composition and basic principles of SOEC[104]. Copyright 2012, IEEE
Fig.10 The relationship of energy in SOEC with temperature[134]. Copyright 2009, Journal of Tsinghua University (Science and Technology)
Fig.11 Conductivity of different electrolyte materials[135]. Copyright 2008, Royal Society of Chemistry
Fig.12 The crystal structure of perovskite type oxygen electrode material for SOEC[139]. Copyright 2019, Royal Society of Chemistry
Fig.13 The OER’s specific activity of perovskite varies with the filling of eg orbital on the surface of B anion[140]. Copyright 2011, AAAS
Fig.14 Technical progress of SOEC and SOEC stack in recent 15 years: (a) Comparison of several typical hydroelectrolysis technologies; (b) SOEC monomer attenuation performance improvement; (c) SOEC stack duration tests progress; (d) the corresponding degradation of SOEC stack[4]. Copyright 2020, AAAS
Fig.15 SOEC stack developed and designed by INET, Tsinghua University
Fig.16 Solar photolysis of water to produce hydrogen[171]. Copyright 2019, Elsevier
Fig.17 The band gap of several semiconductors[172]. Copyright 2020, Elsevier
Fig.18 Z-type semiconductor catalyst[178]
Table 9 Basic information of major hydrogen production process
Fig.19 Basic structure of wind power hydrogen production system[200]。Copyright 2019, SAGE
[1]
Zhiyan consulting. China’s Energy Consumption in the First Three Quarters of 2019, Energy Imports, Energy Market Performance and China’s Total Energy Consumption Forecast Analysis in 2019(智研咨询. 2019年前三季度中国能源消费情况、能源进口情况、能源市场表现情况及2019年中国能源消费总量预测分析). (2019.11.19). [2020.11.17].
[2]
Cao J W, Qin X F, Geng G, Zhang W Q, Yu B. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6):1461.
( 曹军文, 覃祥富, 耿嘎, 张文强, 于波. 石油学报(石油加工), 2021, 37(6):1461.)
[3]
Gernaat D E H J, Boer H S, Daioglou V, Yalew S G, Müller C, Vuuren D P. Nat. Clim. Change, 2021, 11(2): 119.

doi: 10.1038/s41558-020-00949-9
[4]
Hauch A, Küngas R, Blennow P, Hansen A B, Hansen J B, Mathiesen B V, Mogensen M B. Science, 2020, 370(6513): eaba6118. DOI: 10.1126/science.aba6118

doi: 10.1126/science.aba6118
[5]
Gan Y.Views on the Development of Hydrogen Energy in China. (干勇. 中国氢能发展的几点思考)(2020. 07.30). [2020.11.17].
[6]
Qing N L M. White Paper on Hydrogen Energy and Fuel cell Industry in China. (氢能联盟.中国氢能源及燃料电池产业白皮书) (2019. 06.29). [2020.11.27].
[7]
Li Y H, Chen J, Liu C S, Yang Y, Li F H, Gong Y L, Liu M H. Plat. Finish., 2019, 41(10): 22.
( 李永恒, 陈洁, 刘城市, 杨云, 李菲晖, 巩运兰, 刘美华. 电镀与精饰. 2019, 41(10): 22.)
[8]
Huang G S, Li J S, Wei S X, Yang Y X, Zhou X Y. Chem. Ind. Eng. Prog., 2019, 38(12): 5217.
( 黄格省, 李锦山, 魏寿祥, 杨延翔, 周笑洋. 化工进展, 2019, 38(12): 5217.)
[9]
Guo L J. Leading the Revolution of Energy Technology and Industrial Transformation with "Orderly Transformation of Energy". Sci. Technol. Rev.
( 郭烈锦. 以“能源有序转化”引领能源技术革命和产业变革. 科技导报.) (2020.07.03). [2020.11.17].
[10]
Peng S P. Hydrogen Energy and Fuel Cell Development Strategy in China.
(彭苏萍. 中国氢能源与燃料电池发展战略研究.) (2020.07.30). [2020.11.17].
[11]
Yi B L.Meet the High Tide of Hydrogen Storage of Water Electrolysis. (衣宝廉. 迎接电解水制氢储能的高潮.)(2020.07.30).[2020.11.17].
[12]
Qi T Z X.China’s Chlor-Alkali Industry Released 250,000 Tons of By-product Hydrogen in 2017, and It is Suggested to Make Full Use of it.(气体咨询. 中国氯碱工业2017年放空25万吨副产氢,建议充分利用.) (2018. 07.13). [2020.11.17].
[13]
Ouyang M G.Hydrogen Strategy for Automotive Applications Should Focus on Green Hydrogen.(欧阳明高. 面向汽车应用的氢能战略应聚焦绿氢.) (2020.07.30). [2020.11.17].
[14]
Qiao C Z, Xiao Y H, Yuan K, Wang F. J. Fo Chem. Ind. Eng., 2004, 55(S1): 34.
( 乔春珍, 肖云汉, 原鲲, 王峰. 化工学报, 2004, 55(S1): 34.)
[15]
Yang X Y, Chen G, Yin H L, Xu J, Zhang S J. Coal Chemical Industry, 2017, 45(06):40.
( 杨小彦, 陈刚, 殷海龙, 徐婕, 张生军. 煤化工, 2017, 45(06):40)
[16]
Bell D. A., Brian F. Coal Gasification and Its Applications. Beijng:Science Press, 2011.(Bell D. A. Brian F. 煤气化及其应用. 北京: 科学出版社, 2011.).
[17]
Wu G G. Coal gasification Technology. Xuzhou:China University of Mining and Technology Press, 2013.(吴国光. 煤炭气化工艺学. 徐州: 中国矿业大学出版社, 2013.).
[18]
Sharman R B, Lacey J A, Scott J E. Coal. Technol. (Houston), 1981, 4.
[19]
Qian X G. Gas & Heat, 1992, (02):18.(钱笑公. 煤气与热力, 1992, (02):18.)
[20]
Chu X L, Miao Y, Fu YL, Zhang Y B, Miao Y W. Technology & Development of Chemical Industry, 2013, 42
( 12:31.(褚晓亮, 苗阳,付玉玲,张玉斌,苗雨旺. 化工技术与开发, 2013, 42(12):31.)
[21]
Ma J, Sun Z P. Journal of Chemical Industry & Engineering, 2008, (03):54.
( 马军, 孙志萍. 化学工业与工程技术, 2008, (03):54.)
[22]
Yang Y, Wei L, Luo C T. Clean Coal Technol., 2013, 19(01):72.
( 杨英, 魏璐, 罗春桃. 洁净煤技术, 2013, 19(01):72.)
[23]
Chen Y, Ren Z Y. Nitrogenous Fertilizer Progress, 2007, (04): 1.(陈英,任照元. 中氮肥, 2007, (04):1.)
[24]
Zhang J T, Cui B, Ding F X. China Petrochem., 2017,(10): 92.
( 张景涛, 崔滨, 丁法效. 中国石油石化, 2017,(10): 92.)
[25]
Shi J G, An X X, Wang S. Sino Glob. Energy, 2020, 25(3): 21.
( 史俊高, 安晓熙, 王帅. 中外能源, 2020, 25(3): 21.)
[26]
Stiegel G J, Ramezan M. Int. J. Coal Geol., 2006, 65(3/4): 173.
[27]
Economic Daily Multimedia Digital Newspape.(经济日报多媒体数字报刊) (2014. 04.28). [2020. 11. 17].
[28]
Xie J D, Li W H, Chen Y F. Clean Coal Technol., 2007, (02):77.
( 谢继东, 李文华, 陈亚飞. 洁净煤技术, 2007, (02):77.)
[29]
Zhang Z, Hu R S, Wu J, Su H Q. Coal Chem. Ind., 2011, 39(4): 13.
( 张喆, 胡瑞生, 武君, 苏海全. 煤化工, 2011, 39(4): 13.)
[30]
Jin H, Lu Y J, Liao B, Guo L J, Zhang X M. Int. J. Hydrog. Energy, 2010, 35(13): 7151.
[31]
Guo L J, Jin H. Int. J. Hydrog. Energy, 2013, 38(29): 12953.
[32]
Ge Z W, Jin H, Guo L J. Int. J. Hydrog. Energy, 2014, 39(34): 19583.
[33]
Wang Y Z, Zhu Y T, Liu Z, Wang L B, Xu D H, Fang C Q, Wang S Z. Int. J. Hydrog. Energy, 2019, 44(7): 3470.
[34]
Jin H, Lu Y J, Zhao L, Guo L J. China Basic Science, 2018, 20(04):4.
( 金辉, 吕友军, 赵亮, 郭烈锦. 中国基础科学, 2018, 20(04):4.)
[35]
Guo L J, Zhao L, Lu Y J, Jin H. J. Eng. Therm., 2017, 38(03):678.
( 郭烈锦, 赵亮, 吕友军, 金辉. 工程热物理学报, 2017, 38(03):678)
[36]
Polaris Hydrogen Net.Supercritical Water Steam Coal: Prevent Coal Burning Pollution from the Source. (北极星氢能网. 超临界水蒸煤:从源头杜绝烧煤污染.)(2019. 10.15). [2020.11.17].
[37]
Maag G, Zanganeh G, Steinfeld A. Int. J. Hydrog. Energy, 2009, 34(18): 7676.
[38]
Chen X. Master’s Dissertation of Dalian University of Technology,2014. (陈曦. 大连理工大学硕士毕业论文. 2014.)
[39]
Liander H. Trans. Faraday Soc., 1929, 25: 462.

doi: 10.1039/tf9292500462
[40]
Nikolaidis P, Poullikkas A. Renew. Sustain. Energy Rev., 2017, 67: 597.

doi: 10.1016/j.rser.2016.09.044
[41]
Zhao J, Zhou W, Wang J H, Ma J X. Natural Gas Chemical Industry), 2011, 36(06):53.
( 赵健, 周伟, 汪吉辉, 马建新. 天然气化工, 2011, 36(06):53. )
[42]
Bradford M, Vannice M A. Abstracts of Papers of the American Chemical Society, 1998, 215(1):U481.
[43]
German E D, Sheintuch M. Surf. Sci., 2017, 656: 126.

doi: 10.1016/j.susc.2016.03.024
[44]
Sebai I, Boulahaouache A, Trari M, Salhi N. Int. J. Hydrog. Energy, 2019, 44(20): 9949.
[45]
Ashik U P M, Wan Daud W M A, Hayashi J I. Renew. Sustain. Energy Rev., 2017, 76: 743.

doi: 10.1016/j.rser.2017.03.088
[46]
Jia X R. Henan Chem. Ind., 2010, 27(15): 17. (贾秀荣. 河南化工, 2010, 27(15): 17.)
[47]
Chen S H, Zhang K, Chang L P, Wang H. Nat. Gas Chem. Ind., 2019, 44(2): 122.
( 陈思晗, 张珂, 常丽萍, 王辉. 天然气化工, 2019, 44(2): 122.)
[48]
Li P J, Cao J, Wang Y H, Xu H, Zhong J, Liu B. Chemical Industry and Engineering Progress, 2015, 34(6): 1588.
( 李培俊, 曹军, 王元华, 徐宏, 钟杰, 刘波. 化工进展, 2015, 34(6): 1588.)
[49]
Rostrupn. J R. J. Catal., 1973, 31(2):173.

doi: 10.1016/0021-9517(73)90326-6
[50]
Kikuchi E, Tanaka S, Yamazaki Y, Morita Y. Bull. Japan Petrol. Inst., 1974, 16(2): 95.

doi: 10.1627/jpi1959.16.95
[51]
Rostrupnielsen J R, Hansen J H B. J. Catal., 1993, 144(1): 38.
[52]
Qin D, Lapszewicz J. Catal. Today, 1994, 21(2/3): 551.

doi: 10.1016/0920-5861(94)80179-7
[53]
Wei J M, Iglesia E. J. Phys. Chem. B, 2004, 108(13): 4094.

doi: 10.1021/jp036985z
[54]
Wei J M, Iglesia E. J. Phys. Chem. B, 2004, 108(22): 7253.

doi: 10.1021/jp030783l
[55]
Wei J M, Iglesia E. J. Catal., 2004, 225(1):116.

doi: 10.1016/j.jcat.2003.09.030
[56]
Wei J M, Iglesia E. Phys. Chem. Chem. Phys., 2004, 6(13): 3754.

doi: 10.1039/b400934g
[57]
Wei J M, Iglesia E. Angew. Chem. Int. Ed., 2004, 43(28): 3685.

doi: 10.1002/(ISSN)1521-3773
[58]
Jones G, Jakobsen J G, Shim S S, Kleis J, Andersson M P, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen J R, Chorkendorff I, Sehested J, Norskov J K. J. Catal., 2008, 259(1):147.

doi: 10.1016/j.jcat.2008.08.003
[59]
Wei N, Zhang J, Zhong H X, Pan L W, Wang Z Y, Wang J, Zhou Y. J. Nanosci. Nanotechnol., 2019, 19(11): 7416.
[60]
Zhu W G, Wu J D. City Stories, 2018, (7): 1.(朱文革, 吴建栋, 名城绘. 2018, (7):1.)
[61]
Xu R H. Energy Conserv., 2019, 38(2): 110. (徐如辉. 节能, 2019, 38(2): 110.)
[62]
Mao Z Q, Mao Z M, Yu H. Process and Technology of Hydrogen Production. Beijing:Chemical Industry Press, 2018.(毛宗强, 毛志明, 余皓. 制氢工艺与技术, 北京: 化学工业出版社, 2018.).
[63]
Mao Z Q,. Hydrogen Production, and Thermochemical Utilization. Beijing:Chemical Industry Press, 2015.(毛宗强. 氢气生产及热化学利用. 北京: 化学工业出版社, 2015.).
[64]
Li X G. Hydrogen and Hydrogen Energy. Beijing:Machinery Industry Press, 2012.(李星国. 氢与氢能. 北京: 机械工业出版社, 2012.).
[65]
Kong X Z. Liaoning Chemical Industry, 1993, (05): 26.(孔祥芝. 辽宁化工, 1993, (05):26.)
[66]
Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, de Mirodatos C. Chem. Eng. J., 2009, 155(3): 553.

doi: 10.1016/j.cej.2009.09.010
[67]
Shamsudin I K, Abdullah A, Idris I, Gobi S, Othman M R. Fuel, 2019, 253: 722.

doi: 10.1016/j.fuel.2019.05.029
[68]
Wei X Q, Chen J. Low Temperature and Specialty, 2002, (03): 1. (魏玺群, 陈健. 低温与特气, 2002, (03):1.)
[69]
Qin Z H. Low Temperature and Specialty, 2005, 23(2):34.(覃中华. 低温与特气, 2005, 23(2):34.)
[70]
Sun H J, Liang G L. Low Temp. Specialty Gases, 1998, 16(1): 30.
( 孙酣经, 梁国仑. 低温与特气, 1998, 16(1): 30.)
[71]
Liu J, Shen G H, Xie K N, Jing D, Zhai M M, Jiang M G, Luo E P. Medical Gasses Engineering, 2018, 3(1):33.
( 刘娟, 申广浩, 谢康宁, 景达, 翟明明, 姜茂刚, 罗二平. 医用气体工程, 2018, 3(1):33. )
[72]
Yuan X X. Master’s Dissertation of Tianjin University of Technology, 2019.(袁晓旭. 天津理工大学硕士论文, 2019)
[73]
Ghosal K, Freeman B D. Polym. Adv. Technol., 1994, 5(11): 673.

doi: 10.1002/pat.1994.220051102
[74]
Robeson L M. J. Membr. Sci., 1991, 62(2): 165.
[75]
Robeson L M. J. Membr. Sci., 2008, 320(1/2): 390.
[76]
Ahmadizadegan H, Esmaielzadeh S. Polym. Eng. Sci., 2019, 59(S1): E237. DOI: 10.1002/pen.24928

doi: 10.1002/pen.24928
[77]
Sánchez-Laínez J, Paseta L, Navarro M, Zornoza B, Téllez C, Coronas J. Adv. Mater. Interfaces, 2018, 5(19): 1800647.

doi: 10.1002/admi.v5.19
[78]
Inde H, Kanezashi M, Nagasawa H, Nakaya T, Tsuru T. ACS Omega, 2018, 3(6): 6369.

doi: 10.1021/acsomega.8b00632
[79]
Yun S, Oyama S T. J. Membrane Sci., 2011, 375(1/2):28.

doi: 10.1016/j.memsci.2011.03.057
[80]
Edlund D J. US5393325-A. 1995.
[81]
He D, Li S, Liu X P, Zhang C, Yu Q H, Lei Y, Wang S M, Jiang L J. Int. J. Hydrog. Energy, 2013, 38(22): 9343.
[82]
Itoh N, Suga E T, Sato T. Sep. Purif. Technol., 2014, 121: 46.

doi: 10.1016/j.seppur.2013.05.055
[83]
Buxbaum R E, Marker T L. J. Membr. Sci., 1993, 85(1): 29.
[84]
Yen P S, Deveau N D, Datta R. AIChE J., 2017, 63(5): 1483.

doi: 10.1002/aic.v63.5
[85]
Deveau N D, Yen P S, Datta R. Int. J. Hydrog. Energy, 2018, 43(41): 19075.
[86]
Baker J D, Meikrantz D H, Pawelko R J, Anderl R A, Tuggle D G. Fusion Technol., 1995, 27(2T): 8.

doi: 10.13182/FST95-A11963798
[87]
Li P P, Zhai Y P, Wang X P, Chen F. Nat. Gas Chem. Ind., 2020, 45(3): 115.
( 李佩佩, 翟燕萍, 王先鹏, 陈锋. 天然气化工, 2020, 45(3): 115.)
[88]
China Chemical Industry News.Haohua Technology Won the Bidding for the Large-scale PSA Hydrogen Production Project).(中国化工报. 昊华科技中标大型PSA制氢项目) (2019. 07.10). [2020.11.17].
[89]
China Coal Resources Network.China Plans to Build 15 Integrated Refining and Chemical Projects(中国煤炭资源网. 中国拟在建十五个炼化一体化项目). (2017.10.16). [2020.11.17].
[90]
Guan F Y, Wang J, Wu Y, Zhang J, Chen J. Nat. 张杰Gas Chem. Ind., 2017, 42(6):129.
( 管英富, 王键, 伍毅, 陈健. 天然气化工, 2017, 42(6):129.)
[91]
Liu S J, Liu H A, Liu C Y. China International Hydrogen Energy Conference & Annual meeting of Hydrogen Professional Committee of China Industrial Gas Industry Association, Beijing, 2011. 57. (刘胜君,刘华安,刘春渝.中国国际氢能大会暨中国工业气体工业协会氢气专业委员会年会,北京. 2011. 57.).
[92]
Li X. Doctoral Dissertation of Nanjing University of Technology,2006.(李雪. 南京工业大学博士论文, 2006.)
[93]
Zhao Z, Hu S L, Ye Y M. Nuclear Science and Technology, 2017, 5:124.
( 赵展, 胡石林, 叶一鸣. 核科学与技术, 2017, 5:124.)
[94]
Dong Z F.Annual meeting of China Industrial Gas Industry Association in 2000, China Industrial Gas Industry Association, 2000, 123.
( 董子丰. 中国工业气体工业协会2000年年会, 中国工业气体工业协会, 2000, 123.)
[95]
Fang Y, Zhang W Y, Cao J W, Zhu W L. Conservation and Utilization of Mineral Resources, 2018, (4):34.
( 方圆, 张万益, 曹佳文, 朱龙伟. 矿产保护与利用, 2018, (4):34.)
[96]
Hosseini S E, Wahid M A. Renew. Sustain. Energy Rev., 2016, 57: 850.

doi: 10.1016/j.rser.2015.12.112
[97]
Bicakova O, Straka P. Int. J. Hydrog. Energy, 2012, 37(16): 11563.
[98]
Xie F, Peng W, Cao J, Feng X, Wei L, Tong J, Li F, Sun K. Radiocarbon, 2019, 61(3): 867.

doi: 10.1017/RDC.2019.6
[99]
Zeng K, Zhang D. Prog. Energ. Combust., 2011, 37(5):631.

doi: 10.1016/j.pecs.2011.02.002
[100]
Kreuter W, Hofmann H. Int. J. Hydrogen Energ., 1998, 23(8):661.

doi: 10.1016/S0360-3199(97)00109-2
[101]
Mazloomi K, Sulaiman N B, Moayedi H. Int. J. Electrochem. Sc., 2012, 7(4):3314.
[102]
Chatterjee S, Peng X, Intikhab S, Zeng G S, Kariuki N N, Myers D J, Danilovic N, Snyder J. Adv. Energy Mater., 2021, 11(34): 2101438.

doi: 10.1002/aenm.v11.34
[103]
Pandiyan A, Uthayakumar A, Subrayan R, Cha S W, Krishna Moorthy S B. Nanomater. Energy, 2019, 8(1): 2.

doi: 10.1680/jnaen.18.00009
[104]
Ursua A, Gandia L M, Sanchis P. Proc. IEEE, 2012, 100(2): 410.

doi: 10.1109/JPROC.2011.2156750
[105]
Berg H. Bioelectrochemistry Bioenerg., 1993, 32(2): 200.
[106]
Colli A N, Girault H H, Battistel A. Materials, 2019, 12: 1336.

doi: 10.3390/ma12081336
[107]
Ahn S H, Park H Y, Choi I, Yoo S J, Hwang S J, Kim H J, Cho E A, Yoon C W, Park H, Son H. Int. J. Hydrogen Energ., 2013, 38(31):13493.

doi: 10.1016/j.ijhydene.2013.07.103
[108]
Yu L P, Lei T, Nan B, Jiang Y, He Y H, Liu C T. Energy, 2016, 97: 498.

doi: 10.1016/j.energy.2015.12.138
[109]
Wang K C, Xia M, Xiao T, Lei T, Yan W S. Mater. Chem. Phys., 2017, 186: 61.

doi: 10.1016/j.matchemphys.2016.10.029
[110]
Fan C L, Piron D L, Meilleur M, Marin L P. Can. J. Chem. Eng., 1993, 71(4): 570.

doi: 10.1002/cjce.v71:4
[111]
Hong S H, Ahn S H, Choi I, Pyo S G, Kim H J, Jang J H, Kim S K. Appl. Surf. Sci., 2014, 307: 146.

doi: 10.1016/j.apsusc.2014.03.197
[112]
Brennecke P W, Ewe H H. Energy Convers. Manag., 1991, 31(6): 585.

doi: 10.1016/0196-8904(91)90093-X
[113]
Ju D L D.Current Status of Electrolytic Hydrogen Production and Hydrogen Energy Storage in China.(钜大锂电. 国内电解制氢与氢储能发展现状) (2020. 02.21). [2020.11.17].
[114]
Polaris Hydrogen Net. Bottleneck of Renewable Energy Hydrogen Production and Countermeasures. (北极星氢能网. 可再生能源制氢瓶颈和对策)(2020. 01.20). [2020.11.17].
[115]
Gaogong Lithium Electricity.What are the Highlights of Suzhou Jingli 1000m3/h Hydrolycsis Hydrogen Production Equipment.(高工锂电网. 苏州竞立1000m3/h水电解制氢设备亮点在哪?) (2018. 11.09). [2020.11.17].
[116]
China Science Daily. A new generation of electrolytic water catalyst was developed by Dalian Institute of Chemical Engineering,CAS(中国科学报. 中科院大连化物所开发出新一代电解水催化剂). (2019. 09.03). [2020.11.17].
[117]
Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Int. J. Hydrog. Energy, 2017, 42(52): 30470.
[118]
Miles M H, Thomason M A. J. Electrochem. Soc., 1976, 123(10): 1459.
[119]
Carmo M, Fritz D L, Mergel J, Stolten D. Int. J. Hydrog. Energy, 2013, 38(12): 4901.
[120]
Marshall A T, Sunde S, Tsypkin M, Tunold R. Int. J. Hydrog. Energy, 2007, 32(13): 2320.
[121]
Alia S M, Shulda S, Ngo C, Pylypenko S, Pivovar B S. ACS Catal., 2018, 8(3): 2111.

doi: 10.1021/acscatal.7b03787
[122]
Zeng Y C, Guo X Q, Shao Z G, Yu H M, Song W, Wang Z Q, Zhang H J, Yi B L. J. Power Sources, 2017, 342: 947.
[123]
Li D, Song T, Kang J, Liu Y. Chinese Journal of Power Sources, 2016, 40: 2084.
[124]
Rikukawa M, Sanui K. Prog. Polym. Sci., 2000, 25(10): 1463.

doi: 10.1016/S0079-6700(00)00032-0
[125]
Chen J, Yu J, Zhang M. Chem. Ind. Eng. Prog., 2017, 36: 3743.
[126]
Hazarika M, Jana T. Eur. Polym. J., 2013, 49(6): 1564.

doi: 10.1016/j.eurpolymj.2013.01.028
[127]
Zhang P C, Hao C M, Han Y T, Du F M, Wang H Y, Wang X Y, Sun J C. Surf. Coat. Technol., 2020, 397: 126064.

doi: 10.1016/j.surfcoat.2020.126064
[128]
Wilberforce T, El Hassan Z, Ogungbemi E, Ijaodola O, Khatib F N, Durrant A, Thompson J, Baroutaji A, Olabi A G. Renew. Sustain. Energy Rev., 2019, 111: 236.

doi: 10.1016/j.rser.2019.04.081
[129]
Kopp M, Coleman D, Stiller C, Scheffer K, Aichinger J, Scheppat B. Int. J. Hydrog. Energy, 2017, 42(19): 13311.
[130]
Cong Y Y, Yi B L, Song Y J. Nano Energy, 2018, 44: 288.

doi: 10.1016/j.nanoen.2017.12.008
[131]
China National Chemical Industry Journal.Hebei Guyuan Wind Power Hydrogen Production Comprehensive Utilization Demonstration Project started construction. (中国化工报. 河北沽源风电制氢综合利用示范项目开建)(2015. 04.15). [2020.11.17].
[132]
Liang M D.Doctoral Dissertation of Northeastern University), 2009.(梁明德. 东北大学博士论文, 2009.).
[133]
Liu M Y, Yu B, Xu J M. J. Tsinghua Univ. Sci. Technol., 2009, 49(6): 868. 刘明义, 于波, 徐景明. 清华大学学报(自然科学版), 2009, 49(6): 868. (in Chinese)
[134]
Zhang W Q, Yu B, Chen J, Xu J M. Prog. Chem., 2008, (05):778.
( 张文强, 于波, 陈靖, 徐景明. 化学进展, 2008, (05):778.)
[135]
Brett D J L, Atkinson A, Brandon N P, Skinner S J. Chem. Soc. Rev., 2008, 37(8): 1568.

doi: 10.1039/b612060c
[136]
Han M F, Peng S P. Materials and preparation of solid oxide fuel cell. Beijing:Science Press, 2004.(韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备, 北京: 科学出版社, 2004.).
[137]
Liu X L, Ma J F, Liu W H, Xu G, Li H J, Yang L L. Bull. Thechinese Ceram. Soc., 2001, 20(1): 24.
( 刘旭俐, 马峻峰, 刘文化, 徐刚, 李海舰, 杨琳琳. 硅酸盐通报, 2001, 20(1): 24.)
[138]
Marr M, Kuhn J, Metcalfe C, Harris J, Kesler O. J. Power Sources, 2014, 245: 398.
[139]
Zheng Y, Wang J C, Yu B, Zhang W Q, Chen J, Qiao J L, Zhang J J. Chem. Soc. Rev., 2017, 46(5): 1427.

doi: 10.1039/c6cs00403b pmid: 28165079
[140]
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334(6061): 1383.

doi: 10.1126/science.1212858 pmid: 22033519
[141]
Tsvetkov N, Lu Q Y, Chen Y, Yildiz B. ACS Nano, 2015, 9(2): 1613.

doi: 10.1021/nn506279h pmid: 25651454
[142]
Zhu Y M, Zhong X, Jin S G, Chen H J, He Z Y, Liu Q Y, Chen Y. J. Mater. Chem. A, 2020, 8(21): 10957.
[143]
Shimada H, Yamaguchi T, Kishimoto H, Sumi H, Yamaguchi Y, Nomura K, Fujishiro Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[144]
Chen Y, Chen Y, Ding D, Ding Y, Choi Y, Zhang L, Yoo S, Chen D C, de Glee B, Xu H, Lu Q Y, Zhao B T, Vardar G, Wang J Y, Bluhm H, Crumlin E J, Yang C H, Liu J, Yildiz B, Liu M L. Energy Environ. Sci., 2017, 10(4): 964.

doi: 10.1039/C6EE03656B
[145]
Kim S D, Moon H, Hyun S H, Moon J, Kim J, Lee H W. Solid State Ion., 2006, 177(9/10): 931.

doi: 10.1016/j.ssi.2006.02.007
[146]
Høgh J. Doctoral Dissertation of the Technical University of Denmark, 2005.
[147]
Neagu D, Oh T S, Miller D N, Ménard H, Bukhari S M, Gamble S R, Gorte R J, Vohs J M, Irvine J T S. Nat. Commun., 2015, 6(1): 1.
[148]
Wu T, Zhang W Q, Li Y F, Zheng Y, Yu B, Chen J, Sun X M. Adv. Energy Mater., 2018, 8(33): 1802203.

doi: 10.1002/aenm.v8.33
[149]
Kim S J, Kim K J, Choi G M. J. Power Sources, 2015, 284: 617.
[150]
Ren Y Y, Ma J T, Zan Q F, Lin X P, Zhang Y, Deng C S. J. Chin. Ceram. Soc., 2011, 39(7): 1067.
( 任耀宇, 马景陶, 昝青峰, 林旭平, 张勇, 邓长生. 硅酸盐学报, 2011, 39(7): 1067.)
[151]
O’Brien J E, Stoots C M, Herring J S, Hartvigsen J. J. Fuel Cell Sci. Technol., 2006, 3(2): 213.
[152]
Zhang X Y, O’Brien J E, Tao G, Zhou C, Housley G K. J. Power Sources, 2015, 297: 90.
[153]
Brien J O, Boardman R. High Temperature Electrolysis Test Stand. Idaho National Laboratory, (2018. 06.14). [2020.11.17].
[154]
Yan Y, Fang Q, Blum L, Lehnert W. Electrochimica Acta, 2017, 258: 1254.

doi: 10.1016/j.electacta.2017.11.180
[155]
Lin J, Miao G S, Xia C R, Chen C S, Wang S R, Zhan Z L. J. Am. Ceram. Soc., 2017, 100(8): 3794.

doi: 10.1111/jace.2017.100.issue-8
[156]
Wan Y H, Xing Y L, Xu Z Q, Xue S S, Zhang S W, Xia C R. Appl. Catal. B: Environ., 2020, 269: 118809.

doi: 10.1016/j.apcatb.2020.118809
[157]
Yang Y, Li S, Yang Z, Chen Y, Zhang P, Wang Y, Chen F, Peng S. J. Appl. Catal. B-Environ., 2020, 167:0845038.
[158]
Zhang Z B, Zhu Y L, Zhong Y J, Zhou W, Shao Z P. Adv. Energy Mater., 2017, 7(17): 1700242.

doi: 10.1002/aenm.201700242
[159]
Li F, Li Y F, Chen H J, Li H, Zheng Y, Zhang Y P, Yu B, Wang X W, Liu J, Yang C H, Chen Y, Liu M L. ACS Appl. Mater. Interfaces, 2018, 10(43): 36926.

doi: 10.1021/acsami.8b11877
[160]
Zhao C H, Li Y F, Zhang W Q, Zheng Y, Lou X M, Yu B, Chen J, Chen Y, Liu M L, Wang J C. Energy Environ. Sci., 2020, 13(1): 53.

doi: 10.1039/C9EE02230A
[161]
Li Y F, Zhang W Q, Zheng Y, Chen J, Yu B, Chen Y, Liu M L. Chem. Soc. Rev., 2017, 46(20): 6345.

doi: 10.1039/C7CS00120G
[162]
Zheng Y, Li Y F, Wu T, Zhao C H, Zhang W Q, Zhu J X, Li Z P, Chen J, Wang J C, Yu B, Zhang J J. Nano Energy, 2019, 62: 521.

doi: 10.1016/j.nanoen.2019.05.069
[163]
Zhang W Q, Yu B. Journal of Electrochemistry, 2020, 26(02):212.
( 张文强, 于波. 电化学, 2020, 26(02):212.)
[164]
Posdziech O, Schwarze K, Brabandt J. Int. J. Hydrog. Energy, 2019, 44(35): 19089.
[165]
Mogensen M B, Chen M, Frandsen H L, Graves C, Hansen J B, Hansen K V, Hauch A, Jacobsen T, Jensen S H, Skafte T L, Sun X. Clean Energy, 2019, 3(3): 175.

doi: 10.1093/ce/zkz023
[166]
Agency I E. Technology Roadmap: Hydrogen and Fuel Cells, 2015, [2020. 11.17].
[167]
Dotan H, Landman A, Sheehan S W, Malviya K D, Shter G E, Grave D A, Arzi Z, Yehudai N, Halabi M, Gal N, Hadari N, Cohen C, Rothschild A, Grader G S. Nat. Energy, 2019, 4(9): 786.

doi: 10.1038/s41560-019-0462-7
[168]
Khatib F N, Wilberforce T, Ijaodola O, Ogungbemi E, El-Hassan Z, Durrant A, Thompson J, Olabi A G. Renew. Sustain. Energy Rev., 2019, 111: 1.

doi: 10.1016/j.rser.2019.05.007
[169]
Wu W, Ding H P, Zhang Y Y, Ding Y, Katiyar P, Majumdar P K, He T, Ding D. Adv. Sci., 2018, 5(11): 1870070.

doi: 10.1002/advs.v5.11
[170]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0
[171]
Kumaravel V, Mathew S, Bartlett J, Pillai S C. Appl. Catal. B: Environ., 2019, 244: 1021.

doi: 10.1016/j.apcatb.2018.11.080
[172]
Kahng S, Yoo H, Kim J H. Adv. Powder Technol., 2020, 31(1): 11.

doi: 10.1016/j.apt.2019.08.035
[173]
Khan S, Al-Shahry M, Ingler W B. Science, 2002, 297(5590):2243.

doi: 10.1126/science.1075035
[174]
Razavi-Khosroshahi H, Edalati K, Wu J, Nakashima Y, Arita M, Ikoma Y, Sadakiyo M, Inagaki Y, Staykov A, Yamauchi M, Horita Z, Fuji M. J. Mater. Chem. A, 2017, 5(38): 20298.
[175]
Yuan Y J, Chen D Q, Yu Z T, Zou Z G. J. Mater. Chem. A, 2018, 6(25): 11606.
[176]
Meyer T J. Acc. Chem. Res., 1989, 22(5): 163.

doi: 10.1021/ar00161a001
[177]
Li R G, Zhao Y, Li C. Faraday Discuss., 2017, 198: 463.

doi: 10.1039/C6FD00199H
[178]
Li H J, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 3(11): 1500389.

doi: 10.1002/advs.v3.11
[179]
Hill R, Bendall F. Nature, 1960, 186(4719): 136.

doi: 10.1038/186136a0
[180]
Wang Z, Li C, Domen K. Chem. Soc. Rev., 2019, 48(7): 2109.

doi: 10.1039/C8CS00542G
[181]
Yang L, Li X Y, Zhang G Z, Cui P, Wang X J, Jiang X, Zhao J, Luo Y, Jiang J. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[182]
Xie Y P, Wang G S, Zhang E L, Zhang X. Chin. J. Inorg. Chem., 2017, 33(2): 177.
( 谢英鹏, 王国胜, 张恩磊, 张翔. 无机化学学报, 2017, 33(2): 177.)
[183]
Balat H, Kırtay E. Int. J. Hydrog. Energy, 2010, 35(14): 7416.
[184]
Ni M, Leung D Y C, Leung M K H, Sumathy K. Fuel Process. Technol., 2006, 87(5): 461.

doi: 10.1016/j.fuproc.2005.11.003
[185]
Soares J F, Confortin T C, Todero I, Mayer F D, Mazutti M A. Renew. Sustain. Energy Rev., 2020, 117: 109484.

doi: 10.1016/j.rser.2019.109484
[186]
Mona S, Kumar S S, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A. Sci. Total. Environ., 2020, 728: 138481.

doi: 10.1016/j.scitotenv.2020.138481
[187]
Hasnaoui S, Pauss A, Abdi N, Grib H, Mameri N. Int. J. Hydrog. Energy, 2020, 45(11): 6231.
[188]
Ren N Q. Principle and Technology of biological hydrogen production by fermentation, Science Press. Beijing:Science Press, 2017.(任南琪. 发酵法生物制氢原理与技术. 北京: 科学出版社, 2017.).
[189]
Cao L C, Yu I K M, Xiong X N, Tsang D C W, Zhang S C, Clark J H, Hu C W, Ng Y H, Shang J, Ok Y S. Environ. Res., 2020, 186: 109547.

doi: 10.1016/j.envres.2020.109547
[190]
Zhang H L, Liu L, Gao J, Wang X. Gas Heat, 2019, 39(10): 24.)
( 张海梁, 刘璐, 高峻, 王逊. 煤气与热力, 2019, 39(10): 24.)
[191]
El-Emam R S, Özcan H. J. Clean. Prod., 2019, 220: 593.
[192]
Dehghani S, Sayyaadi H. Int. J. Hydrog. Energy, 2013, 38(22): 9074.
[193]
Ping Z, Laijun W, Songzhe C, Jingming X. Renew. Sust. Energ. Rev., 2018, 81:1802.

doi: 10.1016/j.rser.2017.05.275
[194]
Zhou C, Chen S, Wang L, Zhang P. Ind. Eng. Chem. Res., 2018, 57: 7717.

doi: 10.1021/acs.iecr.8b01658
[195]
Shan T W, Song P F, Li Y W, Hou J G, Wang X L, Zhang D. Nat. Gas Chem. Ind., 2020, 45(1): 85.
( 单彤文, 宋鹏飞, 李又武, 侯建国, 王秀林, 张丹. 天然气化工, 2020, 45(1): 85.)
[196]
Yahua consulting.China Hydrogen Energy Industry Chain Annual Report 2019.(亚化咨询. 中国氢能产业链年度报告2019) (2019. 06.21). [2020.11.17].
[197]
Dawood F, Anda M, Shafiullah G M. Int. J. Hydrog. Energy, 2020, 45(7): 3847.
[198]
Xie X S, Yang W J, Shi W, Zhang S S, Wang Z H, Zhou J H. Chem. Ind. Eng. Prog., 2018, 37(6): 2147.
( 谢欣烁, 杨卫娟, 施伟, 张圣胜, 王智化, 周俊虎. 化工进展, 2018, 37(6): 2147.)
[199]
Chang P L, Hsu C W, Chang P C. Int. J. Hydrog. Energy, 2011, 36(21): 14172.
[200]
Li Z, Guo P, Han R H, Sun H X. Energy Explor. Exploitation, 2019, 37(1): 5.
[201]
Guo P, Wang K, Luo A L, Xue M. Journal of Software, 2015, 26(11):3010.
( 郭平, 王可, 罗阿理, 薛明志. 软件学报, 2015, 26(11):3010.)
[202]
Ardabili S F, Najafi B, Shamshirband S, Bidgoli B M, Deo R C, Chau K. Eng. Appl. Comp. Fluid., 2018, 12(1):438.
[203]
Yilmaz C. Geothermics, 2017, 65: 32.
[1] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[4] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[5] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[6] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[7] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[8] Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*. 2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion [J]. Progress in Chemistry, 2016, 28(10): 1528-1540.
[9] Wang Dongdong, Dong Hua, Lei Xiaoli, Yu Yue, Jiao Bo, Wu Zhaoxin. Iridium Complexes for Triplet Photosensitizer [J]. Progress in Chemistry, 2015, 27(5): 492-502.
[10] Zhai Kang, Li Kongzhai, Zhu Xing, Wei Yonggang. Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production [J]. Progress in Chemistry, 2015, 27(10): 1481-1499.
[11] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[12] Zhang Chao, Yin Xiuli, Wu Chuangzhi. Reactors for Hydrogen Production by Bio-Ethanol Reforming [J]. Progress in Chemistry, 2011, 23(4): 810-818.
[13] Xu Chenhong, Han You, Chi Mingyang. Cu2O-Based Photocatalysis [J]. Progress in Chemistry, 2010, 22(12): 2290-2297.
[14] . Steam Reforming of Bio-Oil or Its Model Compounds for Hydrogen Production [J]. Progress in Chemistry, 2010, 22(09): 1687-1700.
[15] . Hydrogen Production by Microbial Electrolysis Cells [J]. Progress in Chemistry, 2010, 22(04): 748-753.