中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 785-796 DOI: 10.7536/PC171226 Previous Articles   Next Articles

• Review •

Applications of Novel Hole-Transporting Material Copper(Ⅰ) Thiocyanate (CuSCN) in Optoelectronic Devices

Yuanyuan Qi, Mingguang Li, Honglei Wang, Wen Zhang, Runfeng Chen*, Wei Huang*   

  1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.61704089,21674049).
PDF ( 1138 ) Cited
Export

EndNote

Ris

BibTeX

As a p-type transparent semiconducting material with wide bandgap, Copper(Ⅰ) thiocyanate (CuSCN) exhibits many advantages, including high transmittance, high conductivity, easy preparation at ambient temperature, solution processable and low cost. Therefore, CuSCN has been widely expected to be a strong alternative as hole-injecting/hole-transporting layer in the application of large-area and inexpensive plastic electronics. This review provides an overview of the fundamental physical properties of CuSCN material, covering crystal structures, optical properties and hole-transporting properties. A variety of preparation methods, ranging from solution processing, electrochemical deposition, to successive ionic layer adsorption and reaction, have so far been implemented for the fabrication of CuSCN thin-films in optoelectronic devices. These techniques commonly used for the deposition of CuSCN films are introduced with practical examples and the advantages and disadvantages of different preparation methods are compared and discussed. Then, the applications of CuSCN semiconducting materials as a hole-transporting layer in the field of field effect transistors(FETs), organic light emitting diodes(OLEDs), organic solar cells(OSCs), and hybrid organic-inorganic solar cells(HSCs) are systematically summarized. A large variety of CuSCN-based optoelectronic devices reported in the literature to date exhibit efficiencies that are far superior to those conventional devices based on common hole-transporting materials, demonstrating significant potentials for a host of relevant applications. Finally, the current difficulties and future research directions of the CuSCN semiconducting material are also discussed to give an outlook of its prospect trends and application potentials, especially in various optoelectronic devices.
Contents
1 Introduction
2 Fundamental physical properties of CuSCN
2.1 Structural properties
2.2 Optical properties
2.3 Hole-transporting abilities
3 Preparation methods of CuSCN thin film
3.1 Solution processing
3.2 Electrochemical deposition
3.3 Successive ionic layer adsorption and reaction
4 Application of CuSCN in optoelectronic devices
4.1 Field effect transistors (FETs)
4.2 Organic light emitting diodes (OLEDs)
4.3 Organic solar cells (OSCs)
4.4 Hybrid organic-inorganic solar cells (HSCs)
5 Conclusion and outlook

CLC Number: 

[1] Wong W Y, Ho C L. J. Mater. Chem., 2009, 19:4457.
[2] Thompson B C, Frechet J M J. Angew. Chem. Int. Ed., 2008, 47:58.
[3] Yip H L, Jen A K Y. Energy Environ. Sci., 2012, 5:5994.
[4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graetzel M. Nature, 2013, 499:316.
[5] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342:341.
[6] Treat N D, Campos L M, Dimitriou M D, Ma B W, Chabinyc M L, Hawker C J. Adv. Mater., 2010, 22:4982.
[7] Hadipour A, Cheyns D, Heremans P, Rand B P. Adv. Energy Mater., 2011, 1:930.
[8] Steim R, Kogler F R, Brabec C J. J. Mater. Chem., 2010, 20:2499.
[9] Ecker B, Posdorfer J, von Hauff E. Sol. Energy Mater. Sol. Cells, 2013, 116:176.
[10] De Kok M M, Buechel M, Vulto S I E, van de Weijer P, Meulenkamp E A, de Winter S, Mank A J G, Vorstenbosch H J M, Weijtens C H L, van Elsbergen V. Phys. Status Solidi A, 2004, 201:1342.
[11] Jorgensen M, Norrman K, Krebs F C. Sol. Energy Mater. Sol. Cells, 2008, 92:686.
[12] Dos Reis Benatto G A, Roth B, Madsen M V, Hoesel M, Sondergaard R R, Jorgensen M, Krebs F C. Adv. Energy Mater., 2014, 4:1400732.
[13] Shao S Y, Liu J, Bergqvist J, Shi S, Veit C, Wuerfel U, Xie Z Y, Zhang F L. Adv. Energy Mater., 2013, 3:349.
[14] Qin P L, Fang G J, Cheng F, Ke W J, Lei H W, Wang H N, Zhao X Z. ACS Appl. Mater. Inter., 2014, 6:2963.
[15] Manders J R, Tsang S W, Hartel M J, Lai T H, Chen S, Amb C M, Reynolds J R, So F. Adv. Funct. Mater., 2013, 23:2993.
[16] Zhang J, Wang J T, Fu Y Y, Zhang B H, Xie Z Y. RSC Adv., 2015, 5:28786.
[17] Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H. Angew. Chem. Int. Ed., 2014, 53:12571.
[18] Murase S, Yang Y. Adv. Mater., 2012, 24:2459.
[19] Lee D Y, Na S I, Kim S S. Nanoscale, 2016, 8:1513.
[20] Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J. Nano Lett., 2014, 14:5561.
[21] Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L. Adv. Energy Mater., 2015, 5:1401943.
[22] Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J. J. Phys. Chem. C, 2010, 114:9111.
[23] Blue R, Mathers F. J. Electrochem. Soc., 1933, 63:231.
[24] Kabešová M, Dunaj-jur D? o M, Serator M, Ga?o J, Garaj J. Inorg. Chim. Acta, 1976, 17:161.
[25] Ji W, Yue G Q, Ke F S, Wu S, Zhao H B, Chen L Y, Wang S Y, Jia Y. J. Korean Phys. Soc., 2012, 60:1253.
[26] Tennakone K, Kumarasinghe A R, Sirimanne P M, Kumara G R R. Thin Solid Films, 1995, 261:307.
[27] Tennakone K, Jayatissa A H, Fernando C A N, Wickramanayake S, Punchihewa S, Weerasena L K, Premasiri W D R. Phys. Status Solidi A, 1987, 103:491.
[28] Ptaszynski B, Skiba E, Krystek J. Thermochim. Acta, 1998, 319:75.
[29] Rietman E A. J. Mater. Sci. Lett., 1985, 4:542.
[30] Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J H, Yan F, O'Regan B C, Amassian A, Anthopoulos T D. Adv. Mater., 2013, 25:1504.
[31] Wu W B, Jin Z G, Hua Z, Fu Y N, Qiu J J. Electrochim. Acta, 2005, 50:2343.
[32] Ni Y, Jin Z, Fu Y. J. Am. Ceram. Soc., 2007, 90:2966.
[33] Pattanasattayavong P, Ndjawa G O N, Zhao K, Chou K W, Yaacobi-Gross N, O'Regan B C, Amassian A, Anthopoulos T D. Chem. Commun., 2013, 49:4154.
[34] Yaacobi-Gross N, Treat N D, Pattanasattayavong P, Faber H, Perumal A K, Stingelin N, Bradley D D C, Stavrinou P N, Heeney M, Anthopoulos T D. Adv. Energy Mater., 2015, 5:1401529.
[35] Perumal A, Faber H, Yaacobi-Gross N, Pattanasattayavong P, Burgess C, Jha S, McLachlan M A, Stavrinou P N, Anthopoulos T D, Bradley D D C. Adv. Mater., 2015, 27:93.
[36] Murugadoss G, Thangamuthu R, Kumar S M S. Sol. Energy Mater. Sol. Cells, 2017, 164:56.
[37] Ogawa Y, White M S, Sun L N, Scharber M C, Sariciftci N S, Yoshida T. ChemPhysChem, 2014, 15:1070.
[38] Ghosh S, Sarkar S K. in 4 International Conference on Advances in Energy Research, Ed. P. C. Ghosh, 2014, 54:777.
[39] Iwamoto T, Ogawa Y, Sun L N, White M S, Glowacki E D, Scharber M C, Sariciftci N S, Manseki K, Sugiura T, Yoshida T. J. Phys. Chem. C, 2014, 118:16581.
[40] Sanchez S, Chappaz-Gillot C, Salazar R, Muguerra H E, Arbaoui E S, Berson S C, Levy-Clement C, Ivanova V. J.Solid State Electr., 2013, 17:391.
[41] Selk Y T, Yoshida T, Oekermann T. Thin Solid Films, 2008, 516:7120.
[42] Paunovic M, Schlesinger M. Fundamentals of Electrochemical Deposition. Hoboken, NJ:Wiley, 2006.
[43] Fu P, Guo X, Wang Z L, Yu S W, Zhou L Y, Yu W, Zhang J, Li C. RSC Adv., 2016, 6:56845.
[44] Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K. J. Phys. Chem. Lett., 2014, 5:1748.
[45] Chappaz-Gillot C, Berson S, Salazar R, Lechene B, Aldakov D, Delaye V, Guillerez S, Ivanova V. Sol. Energy Mater. Sol. Cells, 2014, 120:163.
[46] Chappaz-Gillot C, Salazar R, Berson S, Ivanova V. Electrochem. Commun., 2012, 24:1.
[47] Chappaz-Gillot C, Salazar R, Berson S, Ivanova V. Electrochim. Acta, 2013, 110:375.
[48] Sankapal B R, Goncalves E, Ennaoui A, Lux-Steiner M C. Thin Solid Films, 2004, 451:128.
[49] Gao X D, Li X M, Yu W D, Qiu J J, Gan X Y, Thin Solid Films, 2008, 517:554.
[50] Zhuge F W, Gao X D, Li X M, Gan X Y. J. Inorg. Mater., 2009, 24:8.
[51] Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, LinY H, Faber H, Pattanasattayavong P, Li J H, Yan F, McLachlan M A, Payne D J, Heeney M, Anthopoulos T D. Adv. Funct. Mater., 2017, 27:1701818.
[52] Petti L, Pattanasattayavong P, Lin Y H, Munzenrieder N, Cantarella G, Yaacobi-Gross N, Yan F, Troster G, Anthopoulos T D. Appl. Phys. Lett., 2017, 110:113504.
[53] Xu L J, Wang J Y, Zhu X F, Zeng X C, Chen Z N. Adv. Funct. Mater., 2015, 25:3033.
[54] Thejokalyani N, Dhoble S J. Renew. Sust. Energ. Rev., 2014, 32:448.
[55] Xing X, Zhong L W, Zhang L P, Chen Z J, Qu B, Chen E Q, Xiao L X, Gong Q H. J. Phys. Chem. C, 2013, 117:25405.
[56] Chaudhary N, Chaudhary R, Kesari J P, Patra A, Chand S. J. Mater. Chem. C, 2015, 3:11886.
[57] Chaudhary N, Chaudhary R, Kesari J P, Patra A. Opt. Mater., 2017, 69:367.
[58] Takahashi K, Suzaka S, Sigeyama Y, Yamaguchi T, Nakamura J, Murata K. Chem. Lett., 2007, 36:762.
[59] Eerenstein W, Slooff L H, Veenstra S C, Kroon J M. Thin Solid Films, 2008, 516:7188.
[60] O'Regan B, Schwartz D T. Chem. Mater., 1998, 10:1501.
[61] O'Regan B, Schwartz D T. Chem. Mater., 1995, 7:1349.
[62] Kumara G R R A, Konno A, Senadeera G K R, Jayaweera P V V, de Silva D B R A, Tennakone K. Sol. Energy Mater. Sol. Cells, 2001, 69:195.
[63] Perera V P S, Senevirathna M K I, Pitigala P, Tennakone K. Sol. Energy Mater. Sol. Cells, 2005, 86:443.
[64] Premalal E V A, Kumara G R R A, Rajapakse R M G, Shimomura M, Murakami K, Konno A. Chem. Commun., 2010, 46:3360.
[65] Premalal E V A, Dematage N, Kumara A R R A, Rajapakse R M G, Shimomura M, Murakami K, Konno A. J. Power Sources, 2012, 203:288.
[66] Premalal E V A, Dematage N, Konno A. Chem. Lett., 2012, 41:510.
[67] Li M H, Shen P S, Wang K C, Guo T F, Chen P. J. Mater. Chem. A, 2015, 3:9011.
[68] Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P. ChemPhysChem, 2014, 15:1194.
[69] Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Graetzel M. Nat. Commun., 2014, 5:3834.
[70] Chavhan S, Miguel O, Grande H J, Gonzalez-Pedro V, Sanchez R S, Barea E M, Mora-Sero I, Tena-Zaera R. J. Mater. Chem. A, 2014, 2:12754.
[71] Ye S Y, Sun W H, Li Y L, Yan W B, Peng H T, Bian Z Q, Liu Z W, Huang C H. Nano Lett., 2015, 15:3723.
[72] Li M, Wang Z K, Yang Y G, Hu Y, Feng S L, Wang J M, Gao X Y, Liao L S. Adv. Energy Mater., 2016, 6:1601156.
[73] Ito S, Tanaka S, Nishino H. Chem. Lett., 2015, 44:849.
[74] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M. Science, 2017, 358:768.
[1] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[2] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.
[3] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[4] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[5] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[6] Huang Yanqin|Fan Quli|Huang Wei**. Water-Soluble Conjugated Polyelectrolytes [J]. Progress in Chemistry, 2008, 20(04): 574-585.