中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 847-863 DOI: 10.7536/PC170925 Previous Articles   Next Articles

• Review •

Etching Methods and Application of Molybdenum Disulfide Film

Qingyang Xi1, Jinsong Liu1,2*, Ziquan Li1,3, Kongjun Zhu2, Guoan Tai2*, Ruogu Song1   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. College of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities (No.NS2017038),the National Natural Science Foundation of China (No.51372114,61474063,51672130),the Project of Practice Innovation Training Program for College Students in Jiangsu (No.201710287032X),and the Natural Science Foundation of Jiangsu Province (No.BK20151475).
PDF ( 1051 ) Cited
Export

EndNote

Ris

BibTeX

Transition metal dichalcogenides (TMDCs) have been widely concerned due to dependence of its energy band on the number of layers. Especially the two-dimensional molybdenum disulfide (MoS2) film has become a research hot spot because of its excellent photoelectric properties. So far, chemical vapor deposition (CVD) and exfoliation have become the main methods for preparing MoS2 films, but it is very difficult to precisely control the layers of MoS2 using these methods. Research confirms that the MoS2 films can be further processed by etching methods so as to obtain the sample with a monolayer or a specific number of layers. Therefore, in this paper the research progress about etching technology of MoS2 films based on different etching mechanisms is reviewed and the influence of different etching techniques on the quality of etched films is analyzed. Moreover, the application and prospects of these etching methods in field effect transistor(FET) and other optoelectronic devices are also introduced. Finally, problems that need to be solved in the future study are prospected.
Contents
1 Introduction
2 Physical properties of molybdenum disulfide films
2.1 Crystal structure and band structure
2.2 Optical properties
3 Etching methods of molybdenum disulfide films
3.1 Plasma etching
3.2 Laser etching
3.3 Oxygen/air etching
3.4 Other chemical etching methods
4 Application of etching methods in optoelectronic devices
4.1 Field effect transistor
4.2 Other optoelectronic devices
5 Conclusion and outlook

CLC Number: 

[1] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. Nature, 2012, 490:192.
[2] Subbaiah V Y P, Saji K J, Tiwari A. Adv. Funct. Mater., 2016, 26:2046.
[3] 尤运城(You Y C), 曾甜(Zeng T), 刘劲松(Liu J S), 胡廷松(Hu T S), 台国安(Tai G A). 化学进展(Progress in Chemistry), 2015, 27(11):1578.
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6:147.
[5] Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J, Hersam M C. Appl. Phys. Lett., 2013, 102:173107.
[6] Dattatray J L, Liu B, Matte H S S R, Dravid V P, Rao C N R. ACS Nano, 2012, 6:5635.
[7] Ghatak S, Pal A N, Ghosh A. ACS Nano, 2011, 5:7707.
[8] Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang J S, Yin X, Tosun M, Kapadia R, Fang H, Wallace R M, Javey A. Nano Lett., 2014, 14:1337.
[9] Huang Y, Wu J, Xu. X, Ho Y, Ni G, Zou Q, Koon G K W, Zhao W, Neto A, Eda G, Shen C, Özyilmaz B. Nano Res., 2013, 6:200.
[10] Brown N, Cui N, Mckinlev A. Appl. Surf. Sci., 1998, 134:11.
[11] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:136805.
[12] Fontana M, Deppe T, Boyd A K, Rinzan M, Liu A Y, Paranjape M, Barbara P. Sci. Rep., 2013, 3:1634.
[13] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2012, 6:74.
[14] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M. Nano Lett., 2013, 13:1416.
[15] Guan Z, Wang P, Li Q, Li Y, Fu X, Yang J. Chem. Eng. J., 2017, 327:397.
[16] Hu J, Chen D, Li N, Xu Q, Li H, He J, Lu J. Appl. Catal. B-Environ., 2017, 217:224.
[17] Thangavel S, Thangavel S, Raghavan N, Alagu R, Venugopal G. J. Phys. Chem. Solids., 2017, 110, 266.
[18] Wang J, Jin J, Wang X, Yang S, Zhao Y, Wu Y, Dong S, Sun J, Sun J. J. Colloid. Interf. Sci., 2017, 505:805.
[19] Wang Y, Sunarso J, Wang F, Zhao B, Liu X, Chen G. Ceram. Int., 2017, 43:11028.
[20] Zhang S, Wang L, Liu C, Luo J, Crittenden J, Liu X, Cai T, Yuan J, Pei Y, Liu Y. Water. Res., 2017, 121:11.
[21] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10:1271.
[22] Kadantsev E S, Hawrylak P. Solid. State. Commun., 2012, 152:909.
[23] 曾甜(Zeng T), 尤运城(You Y C), 王旭峰(Wang X F), 胡廷松(Hu T S), 台国安(Tai G A). 化学进展(Progress in Chemistry), 2016, 28(4):459.
[24] Bertrand P A. Phys. Rev. B, 1991, 4:5745.
[25] Bernardi M, Palummo M, Grossman J C. Nano Lett., 2013, 13:3664.
[26] Li Y, Qi Z, Liu M, Wang Y, Cheng X, Zhang G, Sheng L. Nanoscale, 2014, 6:15248.
[27] Mouri S, Miyauchi Y, Matsuda K. Nano Lett., 2013, 13:5944.
[28] Zhou H Q, Yu F, Liu Y Y, Zou X L, Cong C X, Qiu C Y, Yu T,Yan Z, Shen X N, Sun L F, Boris I Y, James M T. Nano Res., 2013, 6:703.
[29] Ramana C V, Becker U, Shutthanandan V, Julien C M. Geochem. Trans., 2008, 9:8.
[30] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24:2320.
[31] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J, Small, 2012, 8:966.
[32] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12:1538.
[33] Tai G A, Zeng T, Yu J, Zhou J X, You Y C, Wang X F, Wu H R, Sun X, Hu T S, Guo W L. Nanoscale, 2016, 8:2234.
[34] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S,Yakobson B I, Idrobo J C, Ajayan P M, Lou J. Nat. Mater., 2013, 12:754.
[35] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Nano Lett., 2013, 13:2615.
[36] Zou X, Liu Y, Yakobson B I. Nano Lett., 2013, 13:253.
[37] Van D Z M, Huang P Y, Chenet D A, Berkelbach T C,You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Nat. Mater., 2013, 12:554.
[38] Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H. ACS Nano, 2013, 7:4202.
[39] Xiao S Q, Xiao P, Zhang X C, Yan D W, Gu X F, Qin F, Ni Z H, Han Z J, Ostrikov K. Sci. Rep., 2016, 6:19945.
[40] Jeon M H, Ahn C, Kim H U, Kim K N, Lin T Z, Qin H Y, Kim Y, Lee S, Kim T, Yeom G Y. Nanotechnology, 2015, 26:355706.
[41] Lin T Z, Kang B T, Jeon M H, Huffman C, Jeon J H, Lee S J, Han W, Lee J Y, Lee S H, Yeom G Y, Kim K N. ACS Appl. Mater. Inter., 2015, 7:15892.
[42] Kim K S, Kim K H, Nam Y, Jeon J, Yim S, Singh E, Lee J Y, Lee S J, Jung Y S, Yeom G Y, Kim D W. ACS Appl. Mater. Inter., 2017, 9:11967.
[43] Varghese A, Sharma C H, Thalakulam M. Nanoscale, 2017, 9:3818.
[44] Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J, Steele G A. Nano Lett., 2012, 12:3187.
[45] Ko P J, Thu T V, Takahashi H, Abderrahmane A, Takamura T, Sandhu A. AIP Conf. Proc., 2014,73:1585.
[46] Sunamura K, Page T R, Yoshida K, Yano T, Hayamizu Y. Mater. Chem. C, 2016, 4:3268.
[47] Wu J, Li H, Yin Z Y, Li H, Liu J Q, Cao X H, Zhang Q, Zhang H. Small, 2013, 9:3314.
[48] Lv D H, Wang H L, Zhu D C, Lin J, Yin G L, Lin F, Zhang Z, Jin C H. Sci. Bull., 2017, 62:846.
[49] Yamamoto M, Einstein T L, Fuhrer M S, Cullen W G. Phys. Chem. C, 2013, 117:25643.
[50] Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. Phys. Rev. Lett., 2000, 84:951.
[51] Bollinger M V, Jacobsen K W, Nørskov J K. Phys. Rev. B, 2003, 67:085410.
[52] Vojvodic A, Hinnemann B, Nørskov J K. Phys. Rev. B, 2009, 80:125416.
[53] Walter T N, Kwok F, Simchi H, Aldosari H M, Mohney S E. J. Vac. Sci. Technol. B, 2017, 35:2166.
[54] Ionescu R, George A, Ruiz I, Favors Z, Mutlu Z, Liu C, Ahmed K, Wu R, Jeong J S, Zavala L, Mkhoyan K A, Ozkan M, Ozkan C S. Chem. Commun., 2014, 50:11226.
[55] Amara K K, Chu L Q, Kumar R, Toh M, Eda G. APL Mater., 2014, 2:092509.
[56] Lin H C, Wang J W, Luo Q Q, Peng H, Luo C H, Qi R J, Huang R, Sejdic J T, Duan C G. J. Alloy. Compo., 2017, 699:222.
[57] Lee C H, Lee E W, McCulloch W, Eddine Z J, Krishnamoorthy S, Newburger M J, Kawakami R K, Wu Y Y, Rajan S. Appl. Phys. Express, 2017, 10:035201.
[58] Leong W S, Thong J T L.Proceedings of the 15th IEEE International Conference on Nanotechnology, Rome,Italy, 2015.
[59] Tai G A, Zeng T, Li H X, Liu J S, Kong J Z, Lv F Y. Mater. Res. Express, 2014, 1:035605.
[60] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Natl. Acad. Sci. USA, 2005, 102:10451.
[61] Lembke D, Kis A. ACS Nano, 2012, 6:10070.
[62] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8:63.
[63] Li H, Lu G, Yin Z, He Q, Zhang Q, Zhang H. Small, 2012, 8:682.
[64] Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand B P. ACS Appl. Mater. Inter., 2011, 3:3244.
[65] Hamwi S, Meyer J, Winkler T, Riedl T, Kowalsky W. Appl. Phys. Lett., 2009, 94:253307.
[66] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M. Nat. Mater., 2014, 13:1128.
[67] Leong W S, Luo X, Li Y, Khoo K H, Quek S Y, Thong J T L. ACS Nano, 2015, 9:869.
[68] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L. J. Sci. Rep., 2014, 4:3826.
[69] Lopez-Sanchez O, Alarcon-Llado E, Koman V, Fontcuberta-i-Morral A, Radenovic A, Kis A. ACS Nano, 2014, 8:3042.
[1] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[4] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[5] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[6] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[7] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[8] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[9] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[10] Geng Xuewen, He Chunlin, Xu Shichong, Li Jungang, Zhu Lijuan, Zhao Liancheng. Silver-Assisted Chemical Etching of Semiconductor Materials [J]. Progress in Chemistry, 2012, (10): 1955-1965.
[11]

Li Heng1,2 Wen Yongqiang2 Yang Qinglin1** Song Yanlin2**

. Organic Molecules Modified Silicon Surface [J]. Progress in Chemistry, 2008, 20(12): 1964-1971.
[12]

Guo Yan|Zhao Jianwei**

. Theoretical Studies of Nonideal Electrochemical Behavior of Self-assembled System [J]. Progress in Chemistry, 2008, 20(06): 821-827.
[13] Huang Yanqin|Fan Quli|Huang Wei**. Water-Soluble Conjugated Polyelectrolytes [J]. Progress in Chemistry, 2008, 20(04): 574-585.
[14] Ying Feng,Min Wang*. Development of Multiphase Laminar Flow on Microfluidic Analysis [J]. Progress in Chemistry, 2006, 18(0708): 966-973.
[15] Ni Gang,Yang Wu**,He Xiaoyan,Bo Lili,Lu Weilian. Advances in Surface Initiated Polymerization [J]. Progress in Chemistry, 2005, 17(06): 1074-1080.