中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1435-1447 DOI: 10.7536/PC150328 Previous Articles   Next Articles

• Review and comments •

Oligothiophene Derivatives in Organic Photovoltaic Devices

Guan Li1*, Zhang Xiaoyuan2, Sun Fuqiang1, Jiang Yue2, Zhong Yiping2, Liu Ping2   

  1. 1. School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
    2. State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the the Natural Science Foundation of Guangdong Province, China (No. S2013040013904).
PDF ( 2500 ) Cited
Export

EndNote

Ris

BibTeX

Oligothiophenes and their derivatives, possessing attractive properties such as good environmental stability and excellent photoelectric properties, are important organic functional materials which can be developed greatly. In this review, the synthesis and properties of oligothiophenes and their derivatives with a focus on applications in organic photovoltaics in recent years are discussed. According to the structure, oligothiophenes and their derivatives are divided into two categories. One category includes oligothiophenes containing nonpolar groups or weak-polar groups, and the other one includes donor-acceptor (D-A) oligothiophenes and their derivatives. The D-A oligothiophene derivatives include one dimensional, two dimensional or star-shaped molecules, self-assemble molecules, donor-acceptor dyads or triads. The oligothiophene derivatives used as acceptors in photovaitic devices are also discussed. Due to the intramolecular charge transfer effect, the photophysical and electrochemical properties of D-A oligothiophene derivatives as donors are superior to those of containing weak-polar group derivatives. The D-A oligothiophene derivatives based devices have the highest photoelectric conversion efficiency (>10%) among small molecular photovoltaic materials. Finally, the main factors that affect the photovoltaic performance of devices are briefly analysised such as HOMO and LUMO energy levels, scope of spectral absorption and film morphology, etc. The open circuit voltage (Voc) is related to the difference between the LUMO energy level of the acceptor and the HOMO energy level of the donor. The short-circuit current (Jsc) is related to the absorption range and intensity of the active layer. The morphology of the active layer can be a determining factor for the fill factor (FF) of photovoltaic devices.

Contents
1 Introduction
2 Synthesis of oligothiophene derivatives
3 Applitation of oligothiophene derivatives on organic photovoltaic devices
3.1 Low-polar oligothiophenes
3.2 Donor-accepter oligothiophene derivatives
4 Conclusion and outlook

CLC Number: 

[1] Spiekermann S, Smestad G. Synthetic Metals, 2001, 121: 1603.
[2] Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H. Science China Chemistry, 2015, 58(2): 248.
[3] Pei J, Yu W L, Heeger A J, Huang W. Macromolecules, 2000, 33(7): 2462.
[4] Roncali J. Chemical Review, 1992, 92(4): 711.
[5] Ma W, Yong C, Gong X, Lee K, Heeger A J. Adv. Funct. Mater., 2005, 15(10): 1617.
[6] Ayzner A L, Wanger D D, Tassone C J, Tolbert S H, Schwartz B J. J. Phys. Chem. C, 2008, 112: 18711.
[7] Chu C W, Yang H, Hou W J, Huang J S, Li G, Yang Y. Appl. Phys. Lett., 2008, 92: 103306.
[8] Richard D, Cullough M. Adv. Funct. Mater., 1998, 10(2): 93.
[9] Armstrong N R, Carter C. Thin Solid Films, 2003, 445: 343.
[10] Kim K, Liu J, Namboothiry M A G, Carroll D L. Appl. Phys. Lett., 2007, 90: 163511.
[11] Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc., 1972, 94: 4374.
[12] Zhao M T, Singh B P, Prasad P N. J. Chem. Phys., 1988, 89 (9): 5535.
[13] Nakanishi H, Sumi N, Aso Y, Otsubo T. J. Org. Chem., 1998, 63: 8632.
[14] Albers W M. Tetrahedron, 1995, 51(13): 3895.
[15] Kosugi M, Shimizu Y, Migita T. Chem. Lett., 1977, 12: 1423.
[16] Milstein D, Stille J K. J. Am. Chem. Soc., 1978, 100: 3636.
[17] Stille J K. Angew. Chem., Int. Ed., 1986, 25: 508.
[18] Osun R M, Ortiz R P, Ruiz Delgado M C, Sakamoto Y, Suzuki T, Hernandez V, López Navarrete J T. J. Phys. Chem. B, 2005, 109: 20737.
[19] Ie Y, Umemoto Y, Okabe M, Kusunoki T, Nakayama K I, Pu Y J, Kido J, Tada H, Aso Y. Org. Lett., 2008, 10(5): 833.
[20] Henssler J T, Zhang X N, Matzger A J. J. Org. Chem., 2009, 74: 9112.
[21] Li Y, Hong X M, Collard D M, El-Sayed M A. Org. Lett., 2000, 2(15): 2385.
[22] Melucci M, Barbarella G, Zambianchi M, Di Pietro P, Bongini A. J. Org. Chem., 2004, 69: 4821.
[23] Åslund A, Sigurdson C J, Klingstedt T, Grathwohl S, Bolmont T, Dickstein D L, Glimsdal E, Prokop S, Lindgren M, Konradsson P, Holtzman D M, Hof P R, Heppner F L, Gandy S, Jucker M, Aguzzi A, Hammarström P, Nilsson K P. ACS Chem. Bio., 2009, 4(8): 673.
[24] Hanène Bedis, Fayçal Kouki, Habib Bouchriha. Appl. Phys. A, 2013, 110: 163.
[25] Niu Q F, Lu Y Q, Sun H J, Li X Y, Tao X T. Dyes and Pigments, 2013, 97: 184.
[26] Kwon J, Hong J P, Noh S, Kim T M, Kim J J, Lee C, Lee S, Hong J I. New J. Chem., 2012, 36: 1813.
[27] Gebeyehu D, Maening B, Drechsel J, Leo K, Pfeiffer M, Sol. Energy Mater. Sol. Cells, 2003, 79: 81.
[28] Azumi R, Goto M, Honda K, Matsumoto M. Bull. Chem. Soc. Jpn., 2003, 76: 1561.
[29] Shibata Y, Kono T, Komura Ni, Yoshida Y. Organic Electronics, 2013, 14: 1073.
[30] Pappenfus T M, Mann K R. Org. lett., 2002, 4(18): 3043.
[31] Shang H X, Fan H J, Liu Y, Hu W P, Li Y F, Zhan X W. J. Mater. Chem., 2011, 21: 9667.
[32] Wright I A, Findlay N J, Arumugam S, Inigo A R, Kanibolotsky A L, Zassowski P, Domagala W, Skabara P J. J. Mater. Chem. C, 2014, 2: 2674.
[33] Roquet S, Cravino A, Leriche P, Alévêque O, Frère P, Roncali J. J. Am. Chem. Soc., 2006, 128: 3459.
[34] Bader M M, Pham P T, Elandaloussi E H. Crystal Growth & Design, 2010, 10(12): 5027.
[35] Li Z, Dong Q, Li Y, Xu B, Deng M, Pei J, Zhang J, Chen F, Wen S, Gao Y, Tian W. J. Mater. Chem., 2011, 21: 2159.
[36] Lincker F, Delbosc N, Bailly S, De Bettigines R, Billon M, Pron A, Demadrille R. Adv. Funct. Mater., 2008, 18: 3444.
[37] Mayerhöffer U, Deing K, Gruss K, Braunschweig H, Meerholz K, Würthner F. Angew. Chem., Int. Ed., 2009, 48: 8776.
[38] Walker B, Tamayo A B, Dang X D, Zalar P, Seo J H, Garcia A, Tantiwiwat M, Nguyen T Q. Adv. Funct. Mater., 2009, 19: 3063.
[39] Mei J, Graham K R, Stalder R, Reynolds J R. Org. Lett. 2010, 12: 660.
[40] Steinberger S, Mishra A, Reinold E, Müller C M, Uhrich C, Pfeiffer M, Bäuerle P. Org. Lett., 2011, 13: 90.
[41] Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M. Adv. Mater., 2006, 18: 2872.
[42] Uhrich C, Schueppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P, Bäuerle P. Adv. Funct. Mater., 2007, 17: 2991.
[43] Haid S, Mishra A, Uhrich C, Pfeiffer M, Bäuerle P. Chem. Mater., 2011, 23: 4435.
[44] Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, WeiB A, Uhrich C, Pfeiffer M, Bäuerle P. Adv. Funct. Mater., 2011, 21: 897.
[45] Steinberger S, Mishra A, Reinold E, Levichkov J, Uhrich C, Pfeiffer M, Bäuerle P. Chem. Commun., 2011, 47: 1982.
[46] Cui C H, Min J, Ho C L, Ameribc T, Yang P, Zhao J Z, Brabec C J, Wong W Y. Chem. Commun., 2013, 49: 4409.
[47] He G R, Li Z, Wan X J, Liu Y S, Zhou J Y, Long G K, Zhang M T, Chen Y S. J. Mater. Chem., 2012, 22: 9173.
[48] He G, Li Z, Wan X, Zhou J, Long G, Zhang S, Zhang M, Chen Y. J. Mater. Chem. A, 2013, 1, 1801.
[49] Liu Y S, Wan X J, Wang F, Zhou J Y, Long G K, Tian J G, Chen Y S. Adv. Mater., 2011, 23, 5387.
[50] Lin Y Z, Ma L C, Li Y F, Liu Y Q, Zhu D B, Zhan X W, Advanced Energy Materials, 2014, 4(1), 1300626/1.
[51] Chen Y J, Li C, Zhang P, Li Y W, Yang X M, Chen L W, Tu Y F. Organic Electronics, 2013, 14: 1424.
[52] Hu J H, Liang L S, Chen T H, Liu P, Deng W J. Dyes and Pigments, 2014, 100: 158.
[53] Arnold B, Walker B, Nguyen T Q. Journal of Physics Chemistry C, 2008, 112: 11545.
[54] Li Z F, Dong Q Fg, Xu B, Cheng W D, Yao S Y, Zhang X Y, Wen S P, Li H, Dong Y J, Tian W J. Solar Energy Materials & Solar Cells, 2012, 98: 343.
[55] Leliège A, Blanchard P, Rousseau T, Roncali J. Org. Lett., 2011, 13(12): 3098..
[56] Xia P F, Feng X J, Lu J P, Movileanu R, Tao Y, Baribeau J M, Wong M S. J. Phys. Chem. C, 2008, 112: 16714.
[57] Steinberger S, Mishra A, Reinold E, Mena-Osteritz E, Müller H, Uhrich C, Pfeiffer M, Bäuerle P. J. Mater. Chem., 2012, 22: 2701.
[58] Sun Y M, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J. Nature Materials, 2012, 11: 44.
[59] Luponosov Y N, Min J, Ameri T, Brabec C J, Ponomarenko S A. Organic Electronics, 2014, 15(12): 3800.
[60] Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Mena-Osteritz E, Bäuerle P. Advan. Mater., 2014, 26(42): 7217.
[61] Li Z F; Bian J, Wang Y I, Jiang F Y, Liang G J, He P, Hou Q F, Tong J H, Liang Y, Zhong Z C. Solar Energy Materials & Solar Cells, 2014, 130: 336.
[62] Weidelener M, Wessendorf C D, Hanisch J, Ahlswede E, Götz G, Linde M, Schulz G, Mena-Osteritz E, Mishra A, Bäuerle P. Chemical Communications, 2013, 49(92): 10865.
[63] Zerdan R B, Shewmon N T, Zhu Y, Mudrick J P, Chesney K J, Xue J G, Castellano R K. Adv. Funct. Mater., 2014, 24(38): 5993.
[64] Wessendorf C D, Schulz G L, Mishra A, Kar P, Ata I, Weidelener M, Urdanpilleta M, Hanisch J, Mena-Osteritz E, Lindén M, Ahlswede E, Bäuerle P. Adv. Energy Mater., 2014, 4: 1400266.
[65] Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y. J. Am. Chem. Soc., 2014, 136: 15529.
[66] Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell T P, Chen Y. Nat. Photonics, 2015, 9: 35.
[67] Zuo Y, Zhang Q, Wan X, Li M, Zhang H, Li C, Chen Y. Organic Electronics, 2015, 19: 98.
[68] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P, Chen Y. J. Am. Chem. Soc, DOI: 10.1021/jacs.5b00305
[69] Rance W L, Rupert B L, Mitchell W J, Köse M E, Ginley D S, Shaheen S E., Rumbles G, Nikos K. J. Phys. Chem. C, 2010, 114: 22269.
[70] Zhang W F, Meng G NG, Tam H L, Wong M S, Zhu F R. J. Poly. Sci. Part A: Polymer Chemistry, 2011, 49: 1865.
[71] Lincker F, Heinrich B Bettignies R D, Rannou P, Pécaut J, Grévin B, Pron A, Donnio B, Demadrille R. J. Mater. Chem., 2011, 21: 5238.
[72] Kylberg W, Zhang Y, Aebersold A, Castro F A d, Geiger T, Heier J, Kuster S, Ma C Q, Bäuerle P, Nüesch F, Tisserant J N, Hany R. Organic Electronics, 2012, 13: 1204.
[73] Zhang J, Deng D, He C, He Y J, Zhang M J, Zhang Z G, Zhang Z J, Li Y F. Chem. Mater. 2011, 23: 817.
[74] Lin Y Z, Zhang Z G, Bai H T, Li Y F, Zhan X W. Chem. Commun., 2012, 48: 9655.
[75] Shang H X, Fan H J, Liu Y, Hu W P, Li Y F, Zhan X W. Adv. Mater., 2011, 23: 1554.
[76] Shen S L, G L, He C, Zhang Z J, Sun Q J, Li Y F. Organic Electronics, 2013, 14(3): 875.
[77] Min J, Luponosov Y N, Baran D, Chvalun S N, Shcherbina M A, Bakirov A V, Dmitryakov P V, Peregudova S M, Kausch-Busies N, Ponomarenko S A, Ameri T, Brabec C J. J. Mater. Chem. A, 2014, 2(38): 16135.
[78] Wong W W H, Ma C Q, Pisula W, Mavrinskiy A, Feng X L, Seyler H, Jones D J, Müllen K, Bäuerle P, Holmes A B. Chem. Eur. J., 2011, 17: 5549.
[79] Takemoto K, Karasawa M, Kimura M. ACS Appl. Mater. Interfaces, 2012, 4: 6289.
[80] Mei J G, Graham K R, Stalder R, Tiwari S P, Cheun H, Shim J, Yoshio M, Nuckolls C, Kippelen B, Castellano R K, Reynolds J R. Chem. Mater., 2011, 23: 2285.
[81] Siram R B K, Tandy K, Horecha M, Formanek P, Stamm M, Gevorgyan S, Krebs F C, Kiriy A, Meredith P, Burn P L, Namdas E B, Patil S. J. Phys. Chem. C, 2011, 115: 14369.
[82] Izawa S, Hashimoto K, Tajima K. Syn. Meta., 2012, 162: 2201.
[83] Chen T L, Zhang Y, Smith P, Tamayo A, Liu Y, Ma B. ACS Appl. Mater. Interfaces, 2011, 3: 2275.
[84] Nicolaidis N C, Routley B S, Holdsworth J L, Belcher W J, Zhou X, Dastoor P C, J. Phys. Chem. C, 2011, 115: 7801.
[85] Arbogast J W, Foote C S. J. Am. Chem. Soc., 1991, 113: 8886.
[86] Xiao Z, Ye G, Liu Y, Chen S, Peng Q, Zuo Q Q, Ding L M. Angew. Chem. Int. Ed., 2012, 51: 9038.
[87] Wang C G, Chen W P, Chen S Y, Zhao S S, Zhang J Y, Qiu D L, Wang Y. New J. Chem., 2012, 36: 1788.
[88] Ahmed E , Ren G, Kim F S, Hollenbeck E C, Jenekhe S A. Chem. Mater., 2011, 23: 4563.
[89] Aoyagi K, Shoji Y, Otsubo S, Kawauchi S, Ueda M, Matsumoto H, Higashihara T. Bulletin of the Chemical Society of Japan, 2014, 87(10): 1083.
[90] Liu Q, Zhan H, Ho C L, Dai F R, Fu Y, Xie Z, Wang L, Li J H, Yan F, Huang S P, Wong W Y. Chemistry-an Asian Journal, 2013, 8(8): 1892.
[91] Montcada N F, Pelado B, Viterisi A, Albero J, Coro J, de la Cruz P, Langa F, Palomares E. Organic Electronics, 2013, 14(11): 2826.
[92] Li P C, Tong H, Ding J Q, Xie Z Y, Wang L X. J. Mater. Chem. A: Materials for Energy and Sustainability, 2013, 1(31): 8805.
[93] Ni W, Li M, Kan B, Zuo Y, Zhang Q, Long G, Feng H, Wan X, Chen Y. Organic Electronics, 2014, 15: 2285.
[94] Li Z F, Pei J N, Li Y W, Xu B, Deng M, Liu Z Y, Li H, Lu H G, Li Q, Tian W J. J. Phys. Chem. C, 2010, 114: 18270.
[95] Zhao G J, He Y J, He C, Fan H J, Zhao Y, LiY F. Solar Energy Materials & Solar Cells, 2011, 95: 704.
[96] Gupta A, Ali A, Bilic A, Gao M, Hegedus K, Singh B, Watkins S E, Wilson G J, Bach U, Evans R A. Chem. Commun., 2012, 48: 1889.
[97] Sasaki K, Shibata Y, Lu M, Yoshida Y, Azumi R, Ueda Y. Advances in Materials Physics and Chemistry, 2013, 3(2): 185.
[98] Kwok E C H, Tsang D P K, Chan M Y, Yam V W W. Chem. Eur. J., 2013, 19: 2757.
[1] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[2] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[3] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[4] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[5] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[6] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[7] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[8] La Ming Liu Ping Deng Wenji. Electrochromic Materials Based on Organic Thiophene Derivatives [J]. Progress in Chemistry, 2009, 21(6): 1268-1274.
[9] Zhenkun Hu,Minzhao Xue*,Yangang Liu. Progress in Preparation and Applications of Nanocolorants [J]. Progress in Chemistry, 2006, 18(01): 66-73.