中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1754-1763 DOI: 10.7536/PC150542 Previous Articles   Next Articles

• Review and comments •

Non-Fullerene Organic Small Molecule Acceptor Materials

Song Chengjie1,2, Wang Erjing1,2*, Dong Binghai1,2*, Wang Shimin1,2   

  1. 1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 43006;
    2. Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21402045), the Foundation of Science and Technology Department of Hubei Province for Innovative Research Groups (No. 2013CFA005) and the Wuhan Science and Technology Bureau of Hubei Province of China (No. 2013010501010140).
PDF ( 3241 ) Cited
Export

EndNote

Ris

BibTeX

Endowed with high charge transporting capabilities and formation of unique phase-separated microstructure, fullerenes and their derivatives have been playing a predominant role as electron acceptor in bulk hetero-junction devices. However, they also suffer from unconquerable drawbacks, such as poor absorption in visible light region, difficult modification and high cost, which limit the performance improvement and scalable application of organic solar cells. More interests are focused on the non-fullerene small-molecule acceptors. It is reasonable to regulate the molecular energy levels of non-fullerene materials through diversiform chemical approaches, especially for small organic molecules and their oligomers. And electron acceptors with specific aggregated-state morphologies and excellent properties could be accessible by virtue of diverse synthetic methods. In the review, the recent advances on non-fullerene acceptors are summarized with outstanding performance for solution-processed bulk-heterojunction solar cells. These non-fullerene acceptors mainly consist of perylenetetracarboxylic diimide acceptors including its monomers, dimers and quasi-3D-structured acceptors, diketopyrrolopyrrole acceptors, benzothiadiazole-based acceptors, as well as other miscellaneous high-performance small-molecule acceptors. The performance of these acceptors is analyzed from the view of molecular structures and their matching with the related donors. Finally, critical challenges that influence photovoltaic performance and the perspectives of small-molecule acceptors are discussed and addressed.

Contents
1 Introduction
2 High-performance small molecule acceptors for organic solar cells
2.1 Perylenetetracarboxylic diimide-based acceptors
2.2 Diketopyrrolopyrrole-based acceptors
2.3 Benzothiadiazole-based acceptors
2.4 Other small molecule acceptors
3 Conclusion and outlook

CLC Number: 

[1] Gueymard C A. Solar Energy, 2004, 76: 423.
[2] He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat. Photonics, 2012, 6: 591.
[3] Mazzio K A, Luscombe C K. Chem. Soc. Rev., 2015, 44: 78.
[4] Etxebarria I, Ajuria J, Pacios R. Org. Electron., 2015, 19: 34.
[5] Lin Y, Li Y, Zhan X. Chem. Soc. Rev., 2012, 41: 4245.
[6] Søndergaard R, Hösel M, Angmo D, Larsen-Olsen T T, Krebs F C. Mater. Today, 2012, 15: 36.
[7] Tang C W. Appl. Phys. Lett., 1986, 48: 183.
[8] He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell T P, Cao Y. Nat. Photonics, 2015, 6: 174.
[9] bin Mohd Yusoff A R, Kim D, Kim H P, Shneider F K, da Silva W J, Jang J. Energy Environ. Sci., 2015, 8: 303.
[10] 杨正龙(Yang Z L), 卜戈龙(Bo G L), 陈秋云(Chen Q X). 化学进展(Progress in Chemistry), 2011, 23(12): 2607.
[11] Mihailetchi V D, Xie H X, de Boer B, L. Koster L J A, Blom P W M. Adv. Funct. Mater., 2006, 16: 699.
[12] Liu T, Troisi A. Adv. Mater., 2013, 25: 1038.
[13] Li C Z, Chang C Y, Zang Y, Ju H X, Chueh C C, Liang P W, Cho M, Giner D S, Jen A K Y. Adv. Mater., 2014, 26: 6262.
[14] Yan H, Chen Z, Zheng Y, Newman C, Quinn J R, Dotz F,Kastler M, Facchetti A. Nature, 2009, 457: 679.
[15] Scharber M C, Mühlbacher S, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Adv. Mater., 2006, 18: 789.
[16] Lin Y, Zhan X. Mater. Horiz., 2014, 1: 470.
[17] Zhan C, DQ L A. Curr. Org. Chem., 2011, 15: 1314.
[18] Delgado M C R, Kim E G, da Silva D A, Bredas J L. J. Am. Chem. Soc., 2010, 132: 3375.
[19] Zhao Y, Guo Y, Liu Y. Adv. Mater., 2013, 25: 5372.
[20] Schmidt R, Oh J H, Sun Y S, Deppisch M, Krause A M, Radacki K, Braunschweig H, Könemann M, Erk P, Bao Z N, Würthner F. J. Am. Chem. Soc., 2009, 131: 6215.
[21] Würthner F. Chem. Commun., 2004, 14: 1564.
[22] 王洪宇(Wang H Y), 彭波(Peng B), 韦玮(Wei W). 化学进展(Progress in Chemistry), 2008, 20 (11): 1751.
[23] Erten S, Meghdadi F, Gunes S, Koeppe R, Sariciftci N S, Icli S. J. Appl. Phys., 2006, 36: 225.
[24] Shivanna R, Shoaee S, Dimitrov S, Kandappa S K, Rajaram S, Durrant J R, Narayan K S. Energy Environ. Sci., 2014, 7: 435.
[25] Wang J, Yao Y, Dai S, Zhang X, Wang W, He Q, Han L, Lin Y, Zhan X. J. Mater. Chem. A, 2015, 3: 13000.
[26] Lin Y, Wang J, Dai S, Li Y, Zhu D, Zhan X. Adv. Energy Mater., 2014, 4: 1400420.
[27] Zhong Y, Trinh M T, Chen R, Wang W, Khlyabich P P, Kumar B, Xu Q, Nam C Y, Sfeir M Y, Black C, Steigerwald M L, Loo Y L, Xiao S, Ng F, Zhu X Y, Nuckolls C. J. Am. Chem. Soc., 2014, 136: 15215.
[28] Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lai J Y L, Yan H. Energy Environ. Sci., 2015, 8: 520.
[29] Lin Y, Wang Y, Wang J, Hou J, Li Y, Zhu D, Zhan X. Adv. Mater., 2014, 26: 5137.
[30] Liu S Y, Wu C H, Li C Z, Liu S Q, Wei K H, Chen H Z, Jen A K Y. Adv. Sci., 2015, 1500014.
[31] Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai J Y L, Hu H, Ma T, Hu R, Yu D, Huang X, Tang B Z, Yan H. Adv. Mater., 2015, 27: 1015.
[32] Hartnett P E, Timalsina A, Matte H R, Zhou N, Guo X, Zhao W, Facchetti A, Chang R H, Hersam M C, Wasielewski M R, Marks T J. J. Am. Chem. Soc., 2014, 136: 16345.
[33] Cai Y, Huo L, Sun X, Wei D, Tang M, Sun Y. Adv. Energy Mater., 2015, 5: 150032.
[34] Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Mader S R. Adv. Mater., 2011, 23: 268.
[35] Anthony J E, Facchetti A, Heeney M, Mader S R, Zhan X. Adv. Mater., 2010, 22: 3876.
[36] Lee J, Han A R, Yu H, Shin T J, Yang C, Oh J H. J. Am. Chem. Soc., 2013, 135: 9540.
[37] Fu L, Fu W, Cheng P, Xie Z, Fan C, Shi M, Ling J, Hou J, Zhan X, Chen H. J. Mater. Chem. A, 2014, 2: 6589.
[38] Sonar P, Ng G M, Lin T T, Dodabalapur A, Chen Z K. J. Mater. Chem., 2010, 20: 3626.
[39] Lin Y, Cheng P, Li Y, Zhan X. Chem. Commun., 2012, 48: 4773.
[40] Lin Y, Li Y, Zhan X. Adv. Energy Mater., 2013, 3: 724.
[41] Raynor A M, Gupta A, Patil H, Bilic A, Bhosale S V. RSC Adv., 2014, 4: 57635.
[42] Patil H, Zu W X, Gupta A, Chellappan V, Bilic A, Sonar P, Rananaware A, Bhosale S V. Phys. Chem. Chem. Phys., 2014, 16: 23837.
[43] Shi H, Fu W, Shi M, Ling J, Chen H. J. Mater. Chem. A, 2015, 3: 1902.
[44] Woo C H, Holcombe T W, Unruh D A, Sellinger A, Fréchet J M J. Chem. Mater., 2010, 22: 1673.
[45] Bloking J T, Han X, Higgs A T, Kastrop J P, Pandey L, Norton J E, Risko C, Chen C E, Brédas J L, Sellinger A. Chem. Mater., 2011, 23: 5484.
[46] Chen L, Huang L, Yang D, Ma S, Zhou X, Zhang J, Tu G, Li C. J. Mater. Chem. A, 2014, 2: 2657.
[47] Douglas J D, Chen M S, Niskala J R, Lee O P, Yiu A T, Young E P, Fréchet J M. Adv. Mater., 2014, 26: 4313.
[48] Holliday S, Ashraf R S, Nielsen C B, Kirkus M, Röhr J A, Tan C H, Collado-Fregoso E, Knall A C, Durrant J R, Nelson J, McCulloch I. J. Am. Chem. Soc., 2015, 137: 898.
[49] Ebenhoch B, Prasetya N B, Rotello V M, Cooke G, Samuel I D. J. Mater. Chem. A, 2015, 3: 7345.
[50] Mao Z, Senevirathna W, Liao J Y, Gu J, Kesava S V, Guo C, Gomez E D, Sauvé G. Adv. Mater., 2014, 26: 6290.
[51] Li H, Earmme T, Ren G, Saeki A, Yoshikaw S, Murari N M, Subramaniyan S, Crane M J, Shu S, Jenekhe S A. J. Am. Chem. Soc., 2014, 136: 14589.
[52] Kwon O K, Park J H, Kim D W, Park S K. Adv. Mater., 2015, 27: 1951.
[53] Lin Y, Zhang Z, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X. J. Mater. Chem. A, 2015, 3: 1910.
[54] Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater., 2015, 27: 1170.
[1] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[2] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[3] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[4] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[5] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[6] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[7] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[8] Huo Lijun 1,2 Han Minfang1 Li Yongfang 2**. Perylene diimide as organic photovoltaic acceptor materials [J]. Progress in Chemistry, 2007, 19(11): 1761-1769.
[9] Zhenkun Hu,Minzhao Xue*,Yangang Liu. Progress in Preparation and Applications of Nanocolorants [J]. Progress in Chemistry, 2006, 18(01): 66-73.