中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 2054-2061 Previous Articles   Next Articles

• Review •

Nitrous Oxide Emission and Control in Biological and Chemical Denitrification

Wu Deli*, Fu Minyu, Ma Luming   

  1. College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 1210 ) Cited
Export

EndNote

Ris

BibTeX

Nitrous oxide (N2O) is considered as a greenhouse gas for a long time, in fact, N2O is also an important propellant in the area of aeronautics and astronautics. More and more attention are attracted to the preparation of N2O in western developed countries. A large amount of N2O could be produced in the process of biological and chemical denitrification, moreover, N2O can be emitted in substantial amounts during nitrogen removal in wastewater treatment. However, limited researches on the collection and utilization of N2O as clean energy are reported in China. In this paper, the pathway of N2O emission in biological nitrogen removal, as well as the mechanisms and influence factors are introduced. In the mean time, the contribution of chemodenitrification in the emission of N2O, especially the role of Fe(Ⅱ), is also discussed. The reutilization of N2O emitted in nitrogen removal process as resources are outlined in the final part of this paper. As the process of chemodenitrification can accumulate a great quantity of N2O more rapidly and more effectively in comparison with biological process, the research in the future should be focused on the mechanisms and influence factors of the production of N2O by chemodenitrificaition. Further research is urgently required in the area of utilization of N2O. Contents 1 Introduction
2 N2O emission in biological nitrogen removal
2.1 N2O emission in denitrification
2.2 N2O emission in nitrification
2.3 Major influence factors on N2O emission in biological nitrogen removal
3 N2O emission in chemodenitrification
3.1 Reduction of nitrate and nitrite by Fe(Ⅱ)
3.2 Decomposition of NH4NO3
3.3 Chemodenitrification of other substances
4 Conclusion and outlook

CLC Number: 

[1] Munoz C, Paulino L, Monreal C, Zagal E. Chilean Journal of Agricultural Research, 2010, 70(3): 485-497
[2] Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M. Climate Change 2001: The Scientific Basis. Cambridge and New York: Cambridge University Press, 2001. 251-253
[3] Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L. Climate Change 2007: The Physical Science Basis. Cambridge and New York: Cambridge University Press, 2007, 131-217
[4] 徐文彬(Xu W B). 地质地球化学(Geology Geochemistry), 1999(3): 74-80
[5] Prinn R, Cunnold D, Rasmussen R, Simmonds P, Alyea F, Crawford A, Fraser P, Rosen R. J. Geophys. Res., 1990, 95(D11): 18369-18385
[6] Delwiche C C. Denitrification, Nitrification and Atmospheric Nitrous Oxide. New York: John Wiley & Sons Inc, 1981. 19-24
[7] 贾月(Jia Y), 张浩(Zhang H), 李亚(Li Y). 火箭推进(J. Rocket Propulsion), 2008, (3): 58-62
[8] 吕锡武(LV X W), 稻森悠平(Yuhei I), 水落元之(Mizuochi M). 东南大学学报(自然科学版)(Journal of Southeast University)(Natural Science Edition). 2001, 31(1): 95-99
[9] Knowles R. Microbiological Reviews, 1982, 46: 43-70
[10] Otte S, Grobben N G, Robertson L A, Jetten M S, Kuenen J G. Applied and Environmental Microbiology, 1996, 62(7): 2421-2426
[11] Yoshinari T, Hynes R, Knowles R. Soil Biology and Biochemistry, 1977, 9(3): 177-183
[12] Otte S, Seviour R J, Kuenen J G, Jetten M S M. Water Research, 2000, 34(7): 2080-2088
[13] Schegel H G. Allgemeine Mikrobiolog. 7th ed. Stuttgart: Georg Thieme, 1992. 379-385
[14] Greenberg E P, Becker G E. Canadian Journal of Microbiology, 1977, 23(7): 903-907
[15] 耿军军(Geng J J), 王亚宜(Wang Y Y), 张兆祥(Zhang Z X), 任中佳(Ren Z J), 何维涛(He W T). 环境科学学报(Acta Scientiae Circumstantiae), 2010, 30(9): 1729-1738
[16] Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht M C M. Water Research, 2009, 43(17): 4093-4103
[17] Otte S, Schalk J, Kuenen J G, Jetten M S M. Applied Microbiology and Biotechnology, 1999, 51(2): 255-261
[18] Poth M, Focht D D. Applied and Environmental Microbiology, 1985, 49(5): 1134-1141
[19] Hanaki K, Hong Z, Matsuo T. Water Science and Technology, 1992, 26(5/6): 1027-1036
[20] Kishida N, Kim J H, Kimochi Y, Nishimura O, Sasaki H, Sudo R. Water Science and Technology, 2004, 49(5/6): 359-365
[21] Tallec G, Garnier J, Billen G, Gousailles M. Water Research, 2006, 40(15): 2972-2980
[22] Itokawa H, Hanaki K, Matsuo T. Water Research, 2001, 35(3): 657-664
[23] Kim E W, Bae J H. Water Science and Technology, 2000, 42(3/4): 233-238
[24] Fanning J C. Coordination Chemistry Reviews, 2000, 199(1): 159-179
[25] Stumm W, Sulzberger B. Geochimica et Cosmochimica Acta., 1992, 56(8): 3233-3257
[26] Rakshit S. Doctoral Dissertation of University of Kentucky, 2005
[27] Chalamat A. Ann. Chim., 1973, 8: 353-358
[28] Buresh R J, Moraghan J T. J. Environ. Qual., 1976,5(3): 320-325
[29] Moraghan J T, Buresh R J. Soil Sci. Soc. Am. J., 1977, 41(1): 47-50
[30] Sidwick N V. The Chemical Elements and Their Compounds. Vol. Ⅱ. Oxford: Clarendon Press, 1950. 1319-1370
[31] Gunderloy F C, Fujikawa C Y, Dayan V H, Gird S R. Dilute Solution Reactions of the Nitrate Ion as Applied to Water Reclamation. Ohio: Federal Water Pollution Control Administration, 1968. 1-67
[32] Sørensen J, Thorling L. Geochimica et Cosmochimica Acta, 1991, 55(5): 1289-1294
[33] Averill B A, Tiedje J M. FEBS letters, 1982, 138(1): 8-12
[34] Rakshit S, Matocha C J, Coyne M S. Soil Sci. Soc. Am. J., 2008, 72(4): 1070-1077
[35] Samarkin V A, Madigan M T, Bowles M W, Casciotti K L, Priscu J C, McKay C P, Joye S B. Nature Geosci., 2010, 3(5): 341-344
[36] Ottley C J, Davison W, Edmunds W M. Geochimica et Cosmochimica Acta, 1997, 61(9): 1819-1828
[37] Rakshit S, Matocha C J, Haszler G R. Journal of Environmental Quality, 2005, 34(4): 1286-1292
[38] Hansen H C B, Koch C B. Clay Minerals, 1998, 33(1): 87-101
[39] Huang Y H, Zhang T C. Chemosphere, 2006, 64(6): 937-943
[40] Straub K L, Buchholz-Cleven B E E. Applied and Environmental Microbiology, 1998, 64(12): 4846-4856
[41] Lovely D R. Environmental Microbe-Metal Interactions. Washington D C: ASM Press, 2000. 3-30
[42] Cooper D C, Picardal F W, Schimmelmann A, Coby A J. Applied and Environmental Microbiology, 2003, 69(6): 3517-3525
[43] Misawa T, Hashimoto K, Shimodaira S. Corrosion Science, 1974, 14(2): 131-149
[44] Cox J L, Hallen R T, Lilga M A. Environmental Science & Technology, 1994, 28(3): 423-428
[45] MacNeil J H, Zhang H T, Berseth P, Trogler W C. Journal of the American Chemical Society, 1997, 119(41): 9738-9744
[46] Rubasinghege G, Spak S N, Stanier C O, Carmichael G R, Grassian V H. Environmental Science & Technology, 2011, 45(7): 2691-2697
[47] Longstaff J V L, Singer K. Journal of the Chemical Society (Resumed), 1954, 2604-2610
[48] Longstaff J V L, Singer K. Journal of the Chemical Society (Resumed), 1954, 2610-2617
[49] Dworschak H, Facchini A, Vassallo G, Viola A. La Chimica e l'industria, 1989, 71: 61-64
[50] Schoppelrei J W, Brill T B. J. Phys. Chem. A, 1997, 101(46): 8593-8596
[1] Rui Zhang, Yun Wu, Lutian Wang, Qiang Wu, Hongwei Zhang. Cathode Denitrification of Microbial Fuel Cells [J]. Progress in Chemistry, 2020, 32(12): 2013-2021.
[2] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[3] Yanyan Zhu, Zongyang Yue, Wen Bian, Ruilin Liu, Xiaoxun Ma, Xiaodong Wang. The Structure of Hexaaluminate and Application in High-Temperature Reaction [J]. Progress in Chemistry, 2018, 30(12): 1992-2002.
[4] Wang Haichao, Lu Keding. Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5) [J]. Progress in Chemistry, 2016, 28(6): 917-933.
[5] Li Panpan, Yu Feng, Zhu Mingyuan, Tang Changjin, Dai Bin, Dong Lin. Selective Catalytic Reduction De-NOx Catalysts [J]. Progress in Chemistry, 2016, 28(10): 1578-1590.
[6] Wang Haichao, Chen Jun, Lu Keding. Measurement of NO3 and N2O5 in the Troposphere [J]. Progress in Chemistry, 2015, 27(7): 963-976.
[7] Zhang Mingming, Fan Jianfen, Yu Yi, Yan Xiliang, Xu Jian. Studying on the Mechanisms of NH3/NH4+through Ammonium Transport Proteins [J]. Progress in Chemistry, 2015, 27(11): 1658-1664.