中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1992-2002 DOI: 10.7536/PC180406 Previous Articles   Next Articles

• Review •

The Structure of Hexaaluminate and Application in High-Temperature Reaction

Yanyan Zhu1*, Zongyang Yue1, Wen Bian1, Ruilin Liu1, Xiaoxun Ma1, Xiaodong Wang2*   

  1. 1. School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Xi'an 710069, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21303137, 21536009, 21676269) and Cyrus Tang Foundation.
PDF ( 501 ) Cited
Export

EndNote

Ris

BibTeX

Hexaaluminate materials exhibit remarkable thermal stability due to their peculiar layered structure. The Al3+ ions in the hexaaluminate lattice can be substituted by transition or noble metals, giving rise to redox centers for a variety of reactions. Oxygen in the mirror plane of hexaaluminate is loosely packed, making it a preferential diffusion route of oxygen. All of these favor the application of hexaaluminate in high-temperature oxygen-involved reaction. In this review, the structure of hexaaluminate is firstly introduced. Furthermore, the effect of structure type(magnetoplumbite and β-Al2O3) and metal substitution on the microstructure of hexaaluminate (especially metal chemical state) are carefully described. Then we discuss recent advances of hexaaluminate in high-temperature oxygen-involved reactions, such as, catalytic combustion of CH4, process-gas N2O abatement, decomposition of N2O as a propellant, CH4 chemical looping combustion and reforming, with a special emphasis on the relationship between the microstucture and reaction performance. At last, a brief summary and an outlook are given.
Contents
1 Introduction
2 Crystal structure of hexaaluminate
2.1 Structural type and metal substitution
2.2 Anisotropic crystal growth and preferential diffusion of oxygen
3 Effect of metal substitution on microstructure of hexaaluminate
3.1 Substitution of large cations in the mirror plane
3.2 Substitution of Al3+ ions by transition metal ions
3.3 Substitution of Al3+ ions by noble metal ions
4 High temperature application of hexaaluminate
4.1 Catalytic combustion of methane
4.2 Catalytic decomposition of nitrous oxide
4.3 Chemical looping combustion and reforming of methane
5 Conclusion and outlook

CLC Number: 

[1] Machida M, Eguchi K, Arai H. J. Catal., 1987, 103:385.
[2] Janzen C M, Neurgaonkar R R. Mater. Res. Bull., 1981, 16:519.
[3] Smets B, Rutten, Hoeks G. J. Electr. Ochem. Soc., 1989, 136:2219.
[4] Kahn A, Lejus A M, Madsac M, Théry J, Vivien D. J. Appl. Phys.,1981, 52:6864.
[5] 张俊英(Zhang J Y), 张中太(Zhang Z T), 唐子龙(Tang Z L). 材料科学与工艺(Materials Science and Technology), 2002, 10:213.
[6] 戴德昌(Dai D C), 李沅英(Li Y Y), 蔡少华(Cai S H), 谢驭洲(Xie Y Z), 何汉波(He H B). 中国稀土学报(Journal of the Chinese Rare Earth Society), 1998, 16:284.
[7] 段华超(Duan H C), 刘源(Liu Y), 李增喜(Li Z X), 闻学兵(Wen X B).化工进展(Chemical Industry and Engineering Progress), 2004, 5:486.
[8] 武鹏(Wu P), 胡瑞生(Hu R S), 沈岳年(Shen Y N), 白雅琴(Bai Y Q).稀土(Chinese Rare Earths), 2003, 24:74.
[9] Li T, Zhang K, Liu S, Dou L X, Li Y D. Chin. J. Catal., 2007, 28:783.
[10] Gardnera T H, Spivey J J, Kugler E L, Pakhare D. Applied Catal. A:Gen., 2013, 455:129.
[11] 翟彦青(Zhai Y Q), 李永丹(Li Y D), 孟明(Meng M). 稀土(Chinese Rare Earths), 2004, 25:58.
[12] Li T, Li Y D. Ind. Eng. Chem. Res., 2008, 47:1404.
[13] Xu Z L, Ming Z, Bi Y L, Zhen K J. Catal. Lett., 2000, 64:157.
[14] Saber D, Lejus A M. Mater. Res. Bull., 1981, 16:1325.
[15] Zhu Y Y, Wang X D, Wang A Q, Wu G T, Wang J H, Zhang T. J. Catal., 2011, 283:149.
[16] Iyi N, Takekawa S, Kimura S. J. Solid State Chem., 1989, 83:8.
[17] Machida M, Sato A, Kijima T, Inoue H, Eguchi K, Arai H. Catal. Today, 1995, 26:239.
[18] 徐占林(Xu Z L), 林险峰(Lin X F), 李青仁(Li Q R), 洪军(Hong J), 刘延(Liu Y), 周广栋(Zhou G D), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 石油与天然气化工(Chemical Engineering of Oil and Gas), 2001, 30:218.
[19] Machida M, Eguchi K, Arai H. J.Catal., 1990, 123:477.
[20] 郑建东(Zheng J D), 任晓光(Ren X G). 材料导报(Materials Review), 2011, 25:77.
[21] Machida M, Eguchi K, Arai H. J. Catal., 1989, 120:377.
[22] Bellotto M, Artioli G, Cristiani C, Forzatti P, Groppi G. J. Catal., 1998, 179:597.
[23] Artizzu-Duart P, Brullé Y, Gaillard F, Garbowski E, Guilhaume N, Primet M. Catal. Today., 1999, 54:181.
[24] Groppi G, Cristiani C, Forzatti P. Appl. Catal. B, 2002, 35:137.
[25] Groppi G, Cristiani C, Forzatti P, Bellotto M. J. Mater. Sci., 1994, 29:3441.
[26] Yalfani M S, Santiago M, Pérez-Ramírez J. J. Mater. Chem., 2007, 17:1222.
[27] Zhu Y Y, Wang X D, Zhang Y, Wang J H, Huang Y Q, Kappenstein C, Zhang T. Appl. Catal. A, 2011, 409/410:194.
[28] Zhu S M, Wang X D, Wang A Q, Cong Y, Zhang T. Chem. Commun., 2007, 17:1695.
[29] Kikuchi R, Iwasa Y, Takeguchi T, Eguchi K. Appl. Catal. A, 2005, 281:61.
[30] Pérez-Ramírez J, Santiago M. Chem.Commun., 2007, 38:619.
[31] Tian M, Wang A Q, Wang X D, Zhu Y Y, Zhang T. Appl. Catal. B, 2009, 92:437.
[32] Artizzu-Duart P, Millet J M, Guilhaume N, Garbowski E, Primet M. Catal. Today, 2000, 59:163.
[33] Groppi G, Cristiani C, Forzatti P. J. Catal., 1997, 168:95.
[34] Zhu Y Y, Wang X D, Wu G T, Huang Y Q, Zhang Y, Wang J H, Zhang T. J. Phys. Chem. C, 2012, 116:671.
[35] Lietti L, Cristiani C, Groppi G, Forzatti P. Catal. Today, 2000, 59:191.
[36] Laville F, Perrin M, Lejus A M, Gasperin M, Moncorge R, Vivien D. J. Solid State Chem., 1986, 65:301.
[37] Gasperin M, Saine M C, Kahn A, Laville F, Lejus A M. J. Solid State Chem., 1984, 54:61.
[38] McCarty J G, Gusman M, Lowe D M, Hildenbrand D L, Lau K N. Catal. Today, 1999, 47:5.
[39] Zhang Y, Wang X D, Zhu Y Y, Liu X, Zhang T. Appl. Catal. B, 2013, 129:382.
[40] Zhu S M, Wang X D, Wang A Q, Zhang T. Catal. Today, 2008, 131:339.
[41] Machida M, Eguchi K, Arai H. J. Am. Ceram. Soc., 2010, 71:1142.
[42] Machida M, Eguchi K, Arai H. J. Catal., 1987, 18:385.
[43] Eguchi K, Arai H. Catal. Today, 1996, 29:379.
[44] 郑建东(Zheng J D), 侯豹(Hou B), 葛秀涛(Ge X T), 章守权(Zhang S Q). 材料导报(Materials Review), 2012, 26:102.
[45] 蒋政(Jiang Z), 李进军(Li J J), 郝郑平(Hao Z P), 侯红霞(Hou H X), 许秀艳(Xu X Y), 胡春(Hu C). 催化学报(Chinese Journal of Catalysis), 2004, 25:485.
[46] Ren X G, Zheng J D, Song Y J. J. Fuel. Chem. Technol., 2011, 39:717.
[47] Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K. Catal. Today, 2000, 59:69.
[48] Sohn J M, Kang S K, Woo S I. J. Mol. Catal. A:Chem., 2002, 186:135.
[49] 翟彦青(Di Y Q), 李鑫刚(Li X G), 陈久岭(Chen J L), 李永丹(Li Y D). 化学通报(Chemistry Bulletin), 2005, 68:145.
[50] Kikuchi R, Takeda K, Sekizawa K, Sasaki K, Eguchi K. Appl. Catal. A, 2001, 218:101.
[51] Sadamori H, Tanioka T, Matsuhisa T. Catal. Today, 1995, 26:337.
[52] 李孟丽(Li M L), 杨晓龙(Yang X L), 唐立平(Tang L P), 熊绪茂(Xiong X M), 任嗣利(Ren S L), 胡斌(Hu B). 化学进展(Progress in Chemistry), 2012, 24:1801.
[53] 薛莉(Xue L), 贺泓(He H). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23:664.
[54] Santiago M, Pérez-Ramírez J. Environ. Sci. Technol., 2007, 41:1704.
[55] 宋永吉(Song Y J), 李翠清(Li C Q), 王虹(Wang H), 董留涛(Dong L T).工业催化(Industrial Catalysis). 2008, 16:172.
[56] Najera M, Solunke R, Gardner T, Veser G. Chen. Eng. Res. Des., 2011, 89:1533.
[57] Bhavsar S, Najera M, Veser G. Chem. Eng. Tchhonl., 2012, 35:1281.
[58] Huang Z, Jiang H Q, He F, Chen D Z, Wei G Q, Zhao K, Zheng A Q, Feng Y P, Zhao Z L, Li H B. J. Energy Chem., 2016, 25:62.
[59] 刘黎明(Liu L M), 赵海波(Zhao H B), 郑楚光(Zheng C G). 煤炭转化(Coal Conversion), 2006, 29:83.
[60] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20:1306.
[61] Zheng Y E, Li K Z, Wang H, Tian D, Wang Y H, Zhu X, Wei Y G, Zheng M, Luo Y M. Appl. Catal. B, 2017, 202:51.
[62] 宋涛(Song T), 沈来宏(Shen L H), 肖军(Xiao J), 高正平(Gao Z P), 顾海明(Gu H M), 张思文(Zhang S W). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39:567.
[63] 曾亮(Zeng L), 罗四维(Luo S W), 李繁星(Li F X), 范良士(Fan L S). 中国科学:化学(Scientia Sinica Chimica), 2012, 42:260.
[64] 黄振(Huang Z), 何方(He F), 赵坤(Zhao K), 郑安庆(Zheng A Q), 李海滨(Li H B), 赵增立(Zhao Z L). 化学进展(Progress in Chemistry), 2012, 24:1599.
[65] Tian M, Wang X D, Liu X, Wang A Q, Zhang T. AIChE J., 2016, 62:792.
[66] Tian M, Wang C J, Li L, Wang X D. AIChE J., 2017, 63:2827.
[67] Zhu Y Y, Liu W W, Sun X Y, Ma X X, Kang Y, Wang X D, Wang J. AIChE J., 2018, 64:550.
[68] Zhu Y Y, Sun X Y, Liu W W, Xue P, Tian M, Ma X X, Zhang T. Int. J. Hydrogen Energy, 2017, 42:30509.
[1] Xin Liu, Yongqiang Wang, Fang Liu, Chaocheng Zhao, Huaxin Liu, Lin Shi. Catalytic Combustion of VOCs by Manganese-Based Catalysts [J]. Progress in Chemistry, 2019, 31(8): 1159-1165.
[2] Maozhong Chen, Lanyi Wang, Xuehua Yu, Zhen Zhao. Application of Mn-Based Catalysts for the Catalytic Combustion of Diesel Soot [J]. Progress in Chemistry, 2019, 31(5): 723-737.
[3] Huang Zhen, He Fang, Zhao Kun, Zheng Anqing, Li Haibin, Zhao Zengli. Synthesis Gas Production by Chemical-Looping Reforming of Methane Using Lattice Oxygen [J]. Progress in Chemistry, 2012, 24(08): 1599-1609.
[4] Yin Xiaochun, Wang Rongmin, He Yufeng, Zhu Yongfeng, Pei Fei. Artificial Oxygen Carriers [J]. Progress in Chemistry, 2011, 23(5): 963-973.
[5] Dai Xiaoping Yu Changchun. Direct Partial Oxidation of Methane to Synthesis Gas Using Oxygen Carriers in the Absence of Gaseous Oxygen [J]. Progress in Chemistry, 2009, 21(0708): 1626-1635.
[6] Wang Qi|Cheng Yi|Wu Changning|Jin Yong*. A Novel Energy Conservation Process for Zero Emission of Carbon Dioxide:Chemical Looping Combustion [J]. Progress in Chemistry, 2008, 20(10): 1612-1620.
[7] Wang Junwei,Tian Zhijian**,Xu Jinguang,Xu Yunpeng,Xu Zhusheng,Lin Liwu. Progress in Research of the Catalysts for High Temperature Combustion of Methane [J]. Progress in Chemistry, 2003, 15(03): 242-.