中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 179-189 DOI: 10.7536/PC170825 Previous Articles   Next Articles

• Review •

Controlled Synthesis of New Polymethylene-Based Copolymers

Hao Zhang1,2, Fang Xu1,2, Heying Wang1,2, Tao Jiang1, Zhi Ma2*   

  1. 1. College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China;
    2. Key Laboratory of Synthesis and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21374130).
PDF ( 448 ) Cited
Export

EndNote

Ris

BibTeX

Novel property and application of polyolefin stem from precise control of its structure and composition. Polymethylene(polyethylene's analogue) and its copolymers have become one of hot topics of current research in the polyolefin functionalization field in recent years. In this review, firstly, the polyhomologation of ylide leading to linear polymethylenes with controllable molecular weight and narrow molecular weight distribution is introduced briefly. Then, various borane initiators and ylide monomers used for polyhomologation are described in detail. In addition, the controllable syntheses of new polymethylene-based copolymers by combining polyhomologation with ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide mediated polymerization, ionic polymerization, ring-opening metathesis polymerization and coupling reactions, are reviewed. Finally, the future development of the controllable synthesis strategies and practical application of new polymethylene-based copolymers are prospected.
Contents
1 Introduction
2 Initiators of polyhomologation
2.1 Trifunctional organoboranes
2.2 Bifunctional organoboranes
2.3 Monofunctional organoboranes
3 Monomers of polyhomologation
3.1 Sulfur ylides
3.2 Arsenic ylides
4 Combination with other methodologies to prepare polymethylene-based copolymers
4.1 Combination with ring-opening polymerization
4.2 Combination with atom transfer radical polymerization
4.3 Combination with reversible addition-fragmentation chain transfer polymerization
4.4 Combination with nitroxide-mediated radical polymerization
4.5 Combination with ionic polymerization
4.6 Combination with ring-opening metathesis polymerization
4.7 Combination with coupling reaction
5 Conclusion and outlook

CLC Number: 

[1] 郑宁来(Zheng N L). 合成材料老化与应用(Synthetic Materials Aging and Application). 2016,(6):114.
[2] 洪定一(Hong D Y). 塑料工业手册(聚烯烃)(Handbook of Plastic Industry/Polyolefins). 北京:化学工业出版社(Beijing:Chemical Industry Press), 1999. 296.
[3] Peacock A J. Handbook of Polyethylene:Structure, Properties, and Applications. NY:CRC Press, 2000.
[4] Vasile C. Handbook of Polyolefins, 2nd ed. NY:Marcel Dekker, 2000. 249.
[5] Tufariello J J, Lee L T C. J. Am. Chem. Soc., 1966, 88:4757.
[6] Tufariello J J, Lee L T C, Wojtkowski P. J. Am. Chem. Soc., 1967, 89:6804.
[7] Shea K J, Walker J W, Zhu H, Paz M. J. Am. Chem. Soc., 1997, 119:9049.
[8] Shea K J. Chem. Eur. J., 2000, 6:1113.
[9] Luo J, Shea K J. Acc. Chem. Res., 2010, 43:1420.
[10] Xu F, Dong P, Cui K, Bu S Z, Huang J, Li G Y, Jiang T, Ma Z. RSC Adv., 2016, 6:69828.
[11] Busch B B, Staiger C L, Stoddard J M, Shea K J. Macromolecules, 2002, 35:8330.
[12] Yuan C, Lv H C, Li Q Z, Yang S, Zhao Q L, Huang J, Wei L H, Ma Z. J. Polym. Sci., Part A:Polym. Chem., 2012, 50:2398.
[13] Xu T T, Zhu J, Yuan C, Yang Q L, Cui K, Li C H, Wei L H, Ma Z. Eur. Polym. J., 2014, 54:109.
[14] 李启蒸(Li Q Z), 张国艺(Zhang G Y), 黄晋(Huang J), 赵巧玲(Zhao Q L), 魏柳荷(Wei L H), 何占航(He Z H), 马志(Ma Z). 化学学报(Acta Chimica Sinica), 2011, 69(4):497.
[15] Li Q Z, Zhang G Y, Chen J Z, Zhao Q L, Lv H C, Huang J, Wei L H, D'Agosto F, Boisson C, Ma Z. J. Polym. Sci. Part A:Polym. Chem., 2011, 49:511.
[16] Zhang Z, Gnanou Y, Hadjichristidis N. Polym. Chem., 2016, 7:5507.
[17] Zhang Z, Bilalis P, Zhang H F, Gnanou Y, Hadjichristidis N. Macromolecules, 2017, 50:4217.
[18] Chen J Z, Cui K, Zhang S Y, Xie P, Zhao Q L, Huang J S, Li P, Li G Y, Ma Z. Macromol. Rapid Commun., 2009, 30:532.
[19] Chen J Z, Zhao Q L, Shi L P, Huang J, Li G Y, Zhang S Y,Ma Z. J. Polym. Sci., Part A:Polym. Chem., 2009, 47:5671.
[20] Chen J Z, Zhao Q L, Lv H C, Huang J, Cao S K, Ma Z. J. Polym. Sci. Part A:Polym. Chem., 2010, 48:1894.
[21] Xue Y, Zhang S S, Cui K, Huang J, Zhao Q L, Lan P, Cao S K, Ma Z. RSC Adv., 2015, 5:7090.
[22] 吕会朝(Lv H C), 徐慎刚(Xu S G), 赵巧玲(Zhao Q L), 黄晋(Huang J), 曹少魁(Cao S K), 马志(Ma Z). 化学学报(Acta Chimica Sinica), 2011, 69(17):1126.
[23] Lv H C, Xue Y, Zhao Q L, Huang J, Xu S G, Cao S K, Ma, Z. J. Polym. Sci., Part A:Polym. Chem., 2012, 50:3641.
[24] Xue Y, Lv H C, Zhao Q L, Huang J, Xu S G, Cao S K, Ma Z. Polym. Chem., 2013, 4:307.
[25] Zhang Z, Zhang H F, Gnanou Y, Hadjichristidis, N. Chem. Commun., 2015, 51:9936.
[26] Zhang Z, Altaher M, Zhang H F, Wang D, Hadjichristidis N. Macromolecules, 2016, 49:2630.
[27] Alkayal N, Zhang Z, Bilalis P, Gnanou Y, Hadjichristidis N. Macromol. Chem. Phys., 2017, 218:1600568.
[28] Wang X, Gao J P, Zhao Q L, Huang J, Mao G L, Wu W, Ning Y N, Ma Z. J. Polym. Sci., Part A:Polym. Chem., 2013, 51:2892.
[29] Zhou X Z, Shea K J. Macromolecules, 2001, 34:3111.
[30] Zhang H F, Alkayal N, Gnanoub Y, Hadjichristidis N. Chem. Commun., 2013, 49:8952.
[31] Zhang H F, Hadjichristidis N. Macromolecules, 2016, 49:1590.
[32] Zhang H F, Banerjee S, Faust R, Hadjichristidis N. Polym. Chem., 2016, 7:1217.
[33] Zhang H F, Gnanou Y, Hadjichristidis N. Polym. Chem., 2014, 5:6431.
[34] Zhang H F, Zhang Z, Gnanou Y, Hadjichristidis N. Macromolecules, 2015, 48:3556.
[35] Alkayal N, Hadjichristidis N. Polym. Chem., 2015, 6:4921.
[36] Alkayal N, Durmaz H, Tunca U, Hadjichristidis N. Polym. Chem., 2016, 7:2986.
[37] Alkayal N, Zapsas G, Bilalis P, Hadjichristidis N. Polymer, 2016, 107:415.
[38] Zhao R B, Zhang Y, Chung J, Shea K. ACS Macro Lett., 2016, 5:854.
[39] Zhang H F, Alkayal N, Gnanou Y, Hadjichristidis N. Macromol. Rapid Commun., 2014, 35:378.
[40] 荣雷(Rong L), 宁英男(Ning Y N), 高金苹(Gao J P), 毛国梁(Mao G L), 马志(Ma Z).化学进展(Progress in Chemistry), 2014, 26(8):1369.
[41] Shea K J, Busch B B, Paz M M. Angew. Chem. Int. Ed., 1998, 37:1391.
[42] Wagner C E, Shea K J. Org. Lett., 2001, 3:3063.
[43] Wagner C E, Kim J S, Shea K J. J. Am. Chem. Soc., 2003, 125:12179.
[44] Wagner C E, Rodriguez A A, Shea K J. Macromolecules, 2005, 38:7286.
[45] Shea K J, Staiger C L, Lee S Y. Macromolecules, 1999, 32:3157.
[46] Brown H C, Bhat N G, Somayaji V. Organometallics, 1983, 2:1311.
[47] Slayden S W. J. Org. Chem., 1981, 12:2311.
[48] Bielawski C W. Science, 2002, 297:2041.
[49] Endo K. Adv. Polym. Sci., 2008, 217:121.
[50] Schappacher M, Deffieux A. J. Am. Chem. Soc., 2008, 130:14684.
[51] Laurent B A, Grayson S M. Chem. Soc. Rev., 2009, 38:2202.
[52] Nasongkla N, Chen B, Macaraeg N, Fox M E, Frechet J M J, Szoka F C. J. Am. Chem. Soc., 2009, 131:3842.
[53] 荣雷(Rong L). 东北石油大学硕士论文(Master Dissertation of Northeast Petroleum University), 2015.
[54] Brown H C, Gupta S K. J. Am. Chem. Soc., 1971, 93:1816.
[55] Brown H C, Gupta S K. J. Am. Chem. Soc., 1975, 97:5249.
[56] Lane C F, Kabalka G W. Tetrahedron., 1976, 32:981.
[57] Wang D, Hadjichristidis N. Chem. Commun., 2017, 53:1196.
[58] Clary J W, Rettenmaier T J, Snelling R, Bryks W, Banwell J, Wipke W T, Singaram B. J. Org. Chem., 2011, 76:9602.
[59] Sulc R, Zhou X Z, Shea K J. Macromolecules, 2006, 39:4948.
[60] Bai J, Shea K J. Macromol. Rapid Commun., 2006, 27:1223.
[61] Zhou X Z, Shea K J. J. Am. Chem. Soc., 2000, 122:11515.
[62] Zhao R B, Shea K J. ACS Macro Lett., 2015, 4:584.
[63] Busch B B, Paz M M, Shea K J, Staiger C L. J. Am. Chem. Soc., 2002, 124:3636.
[64] Corey E J, Chaykovsky M. J. Am. Chem. Soc., 1965, 87:1353.
[65] Goddard J P, Lixon P, Le Gall T, Mioskowski C. J. Am. Chem. Soc., 2003, 125:9242.
[66] Mondière R, Goddard J P, Carrot G, Le Gall T, Mioskowski C. Macromolecules, 2005, 38:663.
[67] Mondière R, Goddard J P, Huiban M, Carrot G, Le Gall T, Mioskowski C. Chem. Commun., 2006:723.
[68] Wang D, Zhang Z, Hadjichristidis N. ACS Macro Lett., 2016, 5:387.
[1] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[2] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[3] Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu. Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds [J]. Progress in Chemistry, 2016, 28(11): 1601-1614.
[4] Zhang Lei, Tu Qian, Chen Xuenian, Liu Pu. Nano Metal Catalysts in Dehydrogenation of Ammonia Borane [J]. Progress in Chemistry, 2014, 26(05): 749-755.
[5] Zhao Juan, Huang Pengcheng, Chen Gong, Zhan Maosheng. Chemistry and Application of Dicarbadodecaborane and Its Derivatives [J]. Progress in Chemistry, 2012, 24(04): 556-567.
[6] Shu-Juan Liu Qiang Zhao Wen-Juan Xu. Fluoride sensors based on organoboron compounds [J]. Progress in Chemistry, 2008, 20(11): 1708-1715.
[7] Yan Qiang|Sui Xiaofeng|Yuan Jinying**. Living/Controlled Polymerization in the Synthesis of Star Polymer [J]. Progress in Chemistry, 2008, 20(10): 1562-1571.
[8] Yi Lingmin,Zhan Xiaoli**,Chen Fengqiu. "Living"/Controlled Polymerization of Fluoroalkyl (Meth)acrylate [J]. Progress in Chemistry, 2004, 16(06): 954-.
[9] Zhang Puyu,Wang Li,Feng Linxian. Progress in the Metallocene Borane Catalytic System for Olefin Polymerization [J]. Progress in Chemistry, 2001, 13(02): 108-.