• Review and comments •
Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu. Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds[J]. Progress in Chemistry, 2016, 28(11): 1601-1614.
[1] Zhang H, Wang J, Tian Z X, Liu Y. Phys. Chem. Chem. Phys., 2015, 17:13821. [2] Lv J, Wang Y C, Zhu L, Ma Y M. Nanoscale, 2014, 6:11692. [3] Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S. J. Phys. Chem. A, 2014, 118:8098. [4] Osorio E, Olson J K, Tiznado W, Boldyrev A I. Chem.-Eur. J., 2012, 18:9677. [5] Tse J S. Nature, 2009, 457:800. [6] Akman N, Tas M, Özdo D?an C, Boustani I. Phys. Rev. B, 2011, 84. [7] Slough W J, Kandalam A K, Pandey R. J. Chem. Phys., 2010, 132:104304. [8] Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I. Acc. Chem. Res., 2014, 47:1349. [9] Tai T B, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:13672. [10] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S. Coord. Chem. Rev., 2006, 250:2811. [11] Cheng L J. J. Chem. Phys., 2012, 136:104301. [12] Zhao J J, Huang X M, Shi R L, Liu H S, Su Y, King R B. Nanoscale, 2015, 7:15086. [13] Tai T B, Duong L V, Pham H T, Mai D T, Nguyen M T. Chem. Commun., 2014, 50:1558. [14] Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S. J. Am. Chem. Soc., 2014, 136:12257. [15] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2014, 16:18282. [16] Tai T B, Nguyen M T. Chem. Commun., 2015, 51:7677. [17] Lu Q L, Luo Q Q, Li Y D, Huang S G. Phys. Chem. Chem. Phys., 2015, 17:20897. [18] Lu H G, Li S D. J. Chem. Phys., 2013, 139:224307. [19] Hayami W, Otani S. J. Phys. Chem. A, 2011, 115:8204. [20] Kawai R, Weare J H. J. Chem. Phys., 1991, 95:1151. [21] Zhai H J, Kiran B, Li J, Wang L S. Nat. Mater., 2003, 2:827. [22] Kiran B, Kumar G G, Nguyen M T, Kandalam A K, Jena P. Inorg. Chem., 2009, 48:9965. [23] Kah C B, Yu M, Tandy P, Jayanthi C S, Wu S Y. Nanotechnology, 2015, 26:405701. [24] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S. PNAS, 2005, 102:961. [25] An W, Bulusu S, Gao Y, Zeng X C. J. Chem. Phys., 2006, 124:154310. [26] Johansson M P. J. Phys. Chem. C, 2009, 113:524. [27] Wang Y J, Zhao Y F, Li W L, Jian T, Chen Q, You X R, Ou T, Zhao X Y, Zhai H J, Li S D, Li J, Wang L S. J. Chem. Phys., 2016, 144:064307. [28] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S. Nature Chem., 2014, 6:727. [29] He R X, Zeng X C. Chem. Commun., 2015, 51:3185. [30] Tai T B, Nguyen M T. Nanoscale, 2015, 7:3316. [31] Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I. Phys. Rev. Lett., 2007, 98:166804. [32] Muya J T, De Proft F, Geerlings P, Nguyen M T, Ceulemans A. J. Phys. Chem. A, 2011, 115:9069. [33] Zhao J J, Wang L, Li F Y, Chen Z F. J. Phys. Chem. A, 2010, 114:9969. [34] Wang X Q. Phys. Rev. B, 2010, 82:153409. [35] De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S. Phys. Rev. Lett., 2011, 106:225502. [36] Li F Y, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J J, Chen Z F. J. Chem. Phys., 2012, 136:074302. [37] Li D Z, Bai H, Ou T, Chen Q, Zhai H J, Li S D. J. Chem. Phys., 2015, 142:014302. [38] Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S. Nat. Commun., 2015, 6:8654. [39] Romanescu C, Sergeeva A P, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2011, 133:8646. [40] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2003, 42:6004. [41] Alexandrova A N, Zhai H J, Wang L S, Boldyrev A I. Inorg. Chem., 2004, 43:3552. [42] Fowler P W, Gray B R. Inorg. Chem., 2007, 46:2892. [43] Pan L L, Li J, Wang L S. J. Chem. Phys., 2008, 129:024302. [44] Sergeeva A P, Zubarev D Y, Zhai H J, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2008, 130:7244. [45] Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I. Nature Chem., 2010, 2:202. [46] Sergeeva A P, Averkiev B B, Zhai H J, Boldyrev A I, Wang L S. J. Chem. Phys., 2011, 134:224304. [47] Jiménez-Halla J O C, Islas R, Heine T, Merino G. Angew. Chem. Int. Ed., 2010, 49:5668. [48] Tai T B, Ceulemans A, Nguyen M T. Chem.-Eur. J., 2012, 18:4510. [49] Tai T B, Havenith R W, Teunissen J L, Dok A R, Hallaert S D, Nguyen M T, Ceulemans A. Inorg. Chem., 2013, 52:10595. [50] Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I. J. Chem. Phys., 2012, 136:104310. [51] Sergeeva A P, Piazza Z A, Romanescu C, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2012, 134:18065. [52] Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2013, 139:144307. [53] Chen Q, Li W L, Zhao Y F, Zhang S Y, Hu H S, Bai H, Li H R, Tian W J, Lu H G, Zhai H J, Li S D, Li J, Wang L S. ACS Nano, 2015, 9:754. [54] Oger E, Crawford N R, Kelting R, Weis P, Kappes M M, Ahlrichs R. Angew. Chem., Int. Ed., 2007, 46:8503. [55] Aihara J. J. Phys. Chem. A, 2001, 105:5486. [56] Fowler J E, Ugalde J M. J. Phys. Chem. A, 2000, 104:397. [57] Martinez-Guajardo G, Sergeeva A P, Boldyrev A I, Heine T, Ugalde J M, Merino G. Chem. Commun., 2011, 47:6242. [58] Yuan Y, Cheng L J. J. Chem. Phys., 2012, 137:044308. [59] Chen Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Angew. Chem., 2015, 127:8278. [60] Bai H, Li S D. J. Cluster Sci., 2011, 22:525. [61] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Phys. Conf. Ser., 2009, 176:012030. [62] Ricca A, Bauschlicher J C W. J. Chem. Phys., 1997, 106:2317. [63] Boroznina E V, Borkhoeva N N, Boroznin S V. J. Phys. Conf. Ser., 2015, 586:012007. [64] Olson J K. Dissertation of Utah State University, 2010. [65] Dash B P, Satapathy R, Maguire J A, Hosmane N S. New J. Chem., 2011, 35:1955. [66] Liao R B, Zhu Y, Li Q H, Sa R J. Struct. Chem., 2015, 26:353. [67] Pitochelli A R, Hawthorne F M. J. Am. Chem. Soc., 1960, 82:3228. [68] Szwacki N G, Tymczak C. Nanoscale Res. Lett., 2012, 7:1. [69] Schleyer P V R, Najafian K, Mebel A M. Inorg. Chem., 1998, 37:6765. [70] McKee M L, Wang Z X, Schleyer P V R. J. Am. Chem. Soc., 2000, 122:4781. [71] Liao R B, Tian Z M, Cui Y M, Sa R J. Struct. Chem., 2012, 23:1797. [72] Avdeeva V V, Vologzhanina A V, Goeva L V, Malinina E A, Kuznetsov N T. Z. Anorg. Allg. Chem., 2014, 640:2149. [73] Udovic T J, Matsuo M, Unemoto A, Verdal N, Stavila V, Skripov A V, Rush J J, Takamura H, Orimo S. Chem. Commun., 2014, 50:3750. [74] Olson J K, Boldyrev A I. J. Phys. Chem. A, 2013, 117:1614. [75] Li W L, Romanescu C, Jian T, Wang L S. J. Am. Chem. Soc., 2012, 134:13228. [76] Böyükata M, Özdo D? an C, Güvenç Z B. Phys. Scr., 2008, 77:025602. [77] Chen Q, Li S D. J. Cluster Sci., 2011, 22:513. [78] Li D Z, Lu H G, Li S D. J. Mol. Model., 2012, 18:3161. [79] Li D Z, Chen Q, Wu Y B, Lu H G, Li S D. Phys. Chem. Chem. Phys., 2012, 14:14769. [80] Bai H, Chen Q, Zhao Y F, Wu Y B, Lu H G, Li J, Li S D. J. Mol. Model., 2013, 19:1195. [81] Tian W J, Bai H, Lu H G, Wu Y B, Li S D. J. Cluster Sci., 2013, 24:1127. [82] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2008, 128:124304. [83] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2010, 133:074305. [84] Yu H L, Sang R L, Wu Y Y. J. Phys. Chem. A, 2009, 113:3382. [85] Szwacki N G, Weber V, Tymczak C. Nanoscale Res. Lett., 2009, 4:1085. [86] Olah G A, Prakash G K S, Rasul G. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:6825. [87] Lv J, Wang Y C, Zhang L J, Lin H Q, Zhao J J, Ma Y M. Nanoscale, 2015, 7:10482. [88] Li Q S, Jin Q. J. Phys. Chem. A, 2004, 108:855. [89] Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2011, 135:104301. [90] Alexandrova A N, Nechay M R, Lydon B R, Buchan D P, Yeh A J, Tai M H, Kostrikin I P, Gabrielyan L. Chem. Phys. Lett., 2013, 588:37. [91] Wu Y Y, Zhao F Q, Ju X H. Comput. Theor. Chem., 2014, 1027:151. [92] Xu C, Cheng L J, Yang J L. J. Chem. Phys., 2014, 141:124301. [93] Cheng S B, Berkdemir C, Castleman A W. Phys. Chem. Chem. Phys., 2014, 16:533. [94] Bai H, Chen Q, Zhai H J, Li S D. Angew. Chem. Int. Ed. Engl., 2015, 54:941. [95] Chen Q, Gao T, Tian W J, Bai H, Zhang S Y, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2015, 17:19690. [96] Fa W, Chen S, Pande S, Zeng X C. J. Phys. Chem. A, 2015, 119:11208. [97] Jin P, Hou Q H, Tang C C, Chen Z F. Theor. Chem. Acc., 2015, 134. [98] Chen Q, Li H R, Miao C Q, Wang Y J, Lu H G, Mu Y W, Ren G M, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2016, 18:11610. [99] Tam N M, Pham H T, Duong L V, Pham-Ho M P, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:3000. [100] Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I. J. Phys. Chem. A, 2006, 110:1689. [101] Zhai H J, Miao C Q, Li S D, Wang L S. J. Phys. Chem. A, 2010, 114:12155. [102] Chen Q, Bai H, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 139:044308. [103] Chen Q, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 138:084306. [104] Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B. Nano Lett., 2008, 8:157. [105] Li F, Zhao J J, Chen Z F. Nanotechnology, 2010, 21:134006. [106] Jia J F, Ma L J, Wang J F, Wu H S. J. Mol. Model., 2013, 19:3255. [107] Jia J F, Li X R, Li Y A, Ma L J, Wu H S. Comput. Theor. Chem., 2014, 1027:128. [108] 王转玉(Wang Z Y), 康伟利(Kang W L), 贾建峰(Jia J F), 武海顺(Wu H S). 物理学报(Acta Phys. Sin.), 2014, 63:233102. [109] Xie S Y, Li X B, Tian W Q, Chen N K, Zhang X L, Wang Y L, Zhang S B, Sun H B. Phys. Rev. B, 2014, 90. [110] Zheng Q, Wagner F R, Ormeci A, Prots Y, Burkhardt U, Schmidt M, Schnelle W, Grin Y, Leithe-Jasper A. Chem.-Eur. J., 2015, 21:16532. [111] Wu C, Wang H, Zhang J J, Gou G Y, Pan B C, Li J. ACS Appl. Mater. Interfaces, 2016, 8:2526. [112] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G. Chin. Phys. B, 2014, 23:033101. [113] 阮文(Ruan W), 余晓光(Yu X G), 谢安东(Xie A D), 伍冬兰(Wu D L), 罗文浪(Luo W L). 物理学报(Acta Phys. Sin.), 2014, 63:243101. [114] Liao R B, Chai L L, Zhu Y. Int. J. Quantum Chem., 2015, 115:216. [115] Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:11833. [116] Böyükata M, Güvenç Z B. Int. J. Hydrogen Energy, 2011, 36:8392. [117] Li L F, Xu C, Cheng L J. Comput. Theor. Chem., 2013, 1021:144. [118] Li L F, Xu C, Jin B K, Cheng L J. J. Chem. Phys., 2013, 139:174310. [119] Hou J H, Duan Q, Qin J M, Shen X D, Zhao J X, Liang Q C, Jiang D Y, Gao S. RSC Adv., 2015, 5:38873. [120] Li S D, Guo J C, Miao C Q, Ren G M. Angew. Chem. Int. Ed., 2005, 44:2158. [121] Fokwa B P, Hermus M. Angew. Chem. Int. Ed., 2012, 51:1702. [122] Mbarki M, St Touzani R, Fokwa B P. Angew. Chem. Int. Ed., 2014, 53:13174. [123] Yuan Y, Cheng L J. J. Chem. Phys., 2013, 138:024301. [124] Li L F, Xu C, Jin B K, Cheng L J. Dalton Trans., 2014, 43:11739. [125] Mondal B, Mondal B, Pal K, Varghese B, Ghosh S. Chem. Commun., 2015, 51:3828. [126] Islas R, Heine T, Ito K, Schleye P v R, Merino G. J. Am. Chem. Soc., 2007, 129:14767. [127] Averkiev B B, Boldyrev A I. Russ. J. Gen. Chem., 2008, 78:769. [128] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2011, 50:9334. [129] Li W L, Ivanov A S, Federic J, Romanescu C, Cernusak I, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 139:104312. [130] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 138:134315.[FL)] [ST] [WT] [LM] |
[1] | Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080. |
[2] | Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910. |
[3] | Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956. |
[4] | Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971. |
[5] | Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733. |
[6] | Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705. |
[7] | Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747. |
[8] | Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491. |
[9] | Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452. |
[10] | Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383. |
[11] | Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925. |
[12] | Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498. |
[13] | Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518. |
[14] | Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642. |
[15] | Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||