中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1601-1614 DOI: 10.7536/PC160533 Previous Articles   Next Articles

• Review and comments •

Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds

Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu*   

  1. College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273008, 21573001).
PDF ( 722 ) Cited
Export

EndNote

Ris

BibTeX

Boron atom has received much attention from scientists owing to its unique characters, such as short covalent radius, electron deficiency, large coordination number, sp2 hybridization of valence electrons and three-center bonds. Due to the research of the electronic structure, stability, aromaticity and bonding nature, boron clusters have become a sparkling rising star on the horizon of chemistry. Meanwhile, boron compounds have a vast applications in optics, energy and industrial gas storage because of their rich features. This paper systematicly reviewes the recent research progresses of pure-boron clusters, borane and metal-doped boron clusters. The pure-boron clusters and borane are generalized from neutral, anionic and cationic three types. The metal-doped boron clusters mainly include metal-doped all-boron clusters and borane, transition-metal sandwich-type complexes as well as metal-centered boron molecular wheels.

Contents
1 Introduction
2 Pure-boron clusters
2.1 Neutral boron clusters
2.2 Anionic boron clusters
2.3 Cationic boron clusters
3 Borane clusters
3.1 Anionic borane clusters
3.2 Neutral borane clusters
3.3 Cationic borane clusters
4 Metal-doped boron clusters
4.1 Metal-doped all-boron clusters
4.2 Metal-doped borane compounds
4.3 Transition-metal sandwich-type complexes
4.4 Metal-centered boron molecular wheels
5 Conclusion

CLC Number: 

[1] Zhang H, Wang J, Tian Z X, Liu Y. Phys. Chem. Chem. Phys., 2015, 17:13821.
[2] Lv J, Wang Y C, Zhu L, Ma Y M. Nanoscale, 2014, 6:11692.
[3] Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S. J. Phys. Chem. A, 2014, 118:8098.
[4] Osorio E, Olson J K, Tiznado W, Boldyrev A I. Chem.-Eur. J., 2012, 18:9677.
[5] Tse J S. Nature, 2009, 457:800.
[6] Akman N, Tas M, Özdo D?an C, Boustani I. Phys. Rev. B, 2011, 84.
[7] Slough W J, Kandalam A K, Pandey R. J. Chem. Phys., 2010, 132:104304.
[8] Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I. Acc. Chem. Res., 2014, 47:1349.
[9] Tai T B, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:13672.
[10] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S. Coord. Chem. Rev., 2006, 250:2811.
[11] Cheng L J. J. Chem. Phys., 2012, 136:104301.
[12] Zhao J J, Huang X M, Shi R L, Liu H S, Su Y, King R B. Nanoscale, 2015, 7:15086.
[13] Tai T B, Duong L V, Pham H T, Mai D T, Nguyen M T. Chem. Commun., 2014, 50:1558.
[14] Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S. J. Am. Chem. Soc., 2014, 136:12257.
[15] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2014, 16:18282.
[16] Tai T B, Nguyen M T. Chem. Commun., 2015, 51:7677.
[17] Lu Q L, Luo Q Q, Li Y D, Huang S G. Phys. Chem. Chem. Phys., 2015, 17:20897.
[18] Lu H G, Li S D. J. Chem. Phys., 2013, 139:224307.
[19] Hayami W, Otani S. J. Phys. Chem. A, 2011, 115:8204.
[20] Kawai R, Weare J H. J. Chem. Phys., 1991, 95:1151.
[21] Zhai H J, Kiran B, Li J, Wang L S. Nat. Mater., 2003, 2:827.
[22] Kiran B, Kumar G G, Nguyen M T, Kandalam A K, Jena P. Inorg. Chem., 2009, 48:9965.
[23] Kah C B, Yu M, Tandy P, Jayanthi C S, Wu S Y. Nanotechnology, 2015, 26:405701.
[24] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S. PNAS, 2005, 102:961.
[25] An W, Bulusu S, Gao Y, Zeng X C. J. Chem. Phys., 2006, 124:154310.
[26] Johansson M P. J. Phys. Chem. C, 2009, 113:524.
[27] Wang Y J, Zhao Y F, Li W L, Jian T, Chen Q, You X R, Ou T, Zhao X Y, Zhai H J, Li S D, Li J, Wang L S. J. Chem. Phys., 2016, 144:064307.
[28] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S. Nature Chem., 2014, 6:727.
[29] He R X, Zeng X C. Chem. Commun., 2015, 51:3185.
[30] Tai T B, Nguyen M T. Nanoscale, 2015, 7:3316.
[31] Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I. Phys. Rev. Lett., 2007, 98:166804.
[32] Muya J T, De Proft F, Geerlings P, Nguyen M T, Ceulemans A. J. Phys. Chem. A, 2011, 115:9069.
[33] Zhao J J, Wang L, Li F Y, Chen Z F. J. Phys. Chem. A, 2010, 114:9969.
[34] Wang X Q. Phys. Rev. B, 2010, 82:153409.
[35] De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S. Phys. Rev. Lett., 2011, 106:225502.
[36] Li F Y, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J J, Chen Z F. J. Chem. Phys., 2012, 136:074302.
[37] Li D Z, Bai H, Ou T, Chen Q, Zhai H J, Li S D. J. Chem. Phys., 2015, 142:014302.
[38] Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S. Nat. Commun., 2015, 6:8654.
[39] Romanescu C, Sergeeva A P, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2011, 133:8646.
[40] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2003, 42:6004.
[41] Alexandrova A N, Zhai H J, Wang L S, Boldyrev A I. Inorg. Chem., 2004, 43:3552.
[42] Fowler P W, Gray B R. Inorg. Chem., 2007, 46:2892.
[43] Pan L L, Li J, Wang L S. J. Chem. Phys., 2008, 129:024302.
[44] Sergeeva A P, Zubarev D Y, Zhai H J, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2008, 130:7244.
[45] Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I. Nature Chem., 2010, 2:202.
[46] Sergeeva A P, Averkiev B B, Zhai H J, Boldyrev A I, Wang L S. J. Chem. Phys., 2011, 134:224304.
[47] Jiménez-Halla J O C, Islas R, Heine T, Merino G. Angew. Chem. Int. Ed., 2010, 49:5668.
[48] Tai T B, Ceulemans A, Nguyen M T. Chem.-Eur. J., 2012, 18:4510.
[49] Tai T B, Havenith R W, Teunissen J L, Dok A R, Hallaert S D, Nguyen M T, Ceulemans A. Inorg. Chem., 2013, 52:10595.
[50] Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I. J. Chem. Phys., 2012, 136:104310.
[51] Sergeeva A P, Piazza Z A, Romanescu C, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2012, 134:18065.
[52] Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2013, 139:144307.
[53] Chen Q, Li W L, Zhao Y F, Zhang S Y, Hu H S, Bai H, Li H R, Tian W J, Lu H G, Zhai H J, Li S D, Li J, Wang L S. ACS Nano, 2015, 9:754.
[54] Oger E, Crawford N R, Kelting R, Weis P, Kappes M M, Ahlrichs R. Angew. Chem., Int. Ed., 2007, 46:8503.
[55] Aihara J. J. Phys. Chem. A, 2001, 105:5486.
[56] Fowler J E, Ugalde J M. J. Phys. Chem. A, 2000, 104:397.
[57] Martinez-Guajardo G, Sergeeva A P, Boldyrev A I, Heine T, Ugalde J M, Merino G. Chem. Commun., 2011, 47:6242.
[58] Yuan Y, Cheng L J. J. Chem. Phys., 2012, 137:044308.
[59] Chen Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Angew. Chem., 2015, 127:8278.
[60] Bai H, Li S D. J. Cluster Sci., 2011, 22:525.
[61] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Phys. Conf. Ser., 2009, 176:012030.
[62] Ricca A, Bauschlicher J C W. J. Chem. Phys., 1997, 106:2317.
[63] Boroznina E V, Borkhoeva N N, Boroznin S V. J. Phys. Conf. Ser., 2015, 586:012007.
[64] Olson J K. Dissertation of Utah State University, 2010.
[65] Dash B P, Satapathy R, Maguire J A, Hosmane N S. New J. Chem., 2011, 35:1955.
[66] Liao R B, Zhu Y, Li Q H, Sa R J. Struct. Chem., 2015, 26:353.
[67] Pitochelli A R, Hawthorne F M. J. Am. Chem. Soc., 1960, 82:3228.
[68] Szwacki N G, Tymczak C. Nanoscale Res. Lett., 2012, 7:1.
[69] Schleyer P V R, Najafian K, Mebel A M. Inorg. Chem., 1998, 37:6765.
[70] McKee M L, Wang Z X, Schleyer P V R. J. Am. Chem. Soc., 2000, 122:4781.
[71] Liao R B, Tian Z M, Cui Y M, Sa R J. Struct. Chem., 2012, 23:1797.
[72] Avdeeva V V, Vologzhanina A V, Goeva L V, Malinina E A, Kuznetsov N T. Z. Anorg. Allg. Chem., 2014, 640:2149.
[73] Udovic T J, Matsuo M, Unemoto A, Verdal N, Stavila V, Skripov A V, Rush J J, Takamura H, Orimo S. Chem. Commun., 2014, 50:3750.
[74] Olson J K, Boldyrev A I. J. Phys. Chem. A, 2013, 117:1614.
[75] Li W L, Romanescu C, Jian T, Wang L S. J. Am. Chem. Soc., 2012, 134:13228.
[76] Böyükata M, Özdo D? an C, Güvenç Z B. Phys. Scr., 2008, 77:025602.
[77] Chen Q, Li S D. J. Cluster Sci., 2011, 22:513.
[78] Li D Z, Lu H G, Li S D. J. Mol. Model., 2012, 18:3161.
[79] Li D Z, Chen Q, Wu Y B, Lu H G, Li S D. Phys. Chem. Chem. Phys., 2012, 14:14769.
[80] Bai H, Chen Q, Zhao Y F, Wu Y B, Lu H G, Li J, Li S D. J. Mol. Model., 2013, 19:1195.
[81] Tian W J, Bai H, Lu H G, Wu Y B, Li S D. J. Cluster Sci., 2013, 24:1127.
[82] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2008, 128:124304.
[83] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2010, 133:074305.
[84] Yu H L, Sang R L, Wu Y Y. J. Phys. Chem. A, 2009, 113:3382.
[85] Szwacki N G, Weber V, Tymczak C. Nanoscale Res. Lett., 2009, 4:1085.
[86] Olah G A, Prakash G K S, Rasul G. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:6825.
[87] Lv J, Wang Y C, Zhang L J, Lin H Q, Zhao J J, Ma Y M. Nanoscale, 2015, 7:10482.
[88] Li Q S, Jin Q. J. Phys. Chem. A, 2004, 108:855.
[89] Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2011, 135:104301.
[90] Alexandrova A N, Nechay M R, Lydon B R, Buchan D P, Yeh A J, Tai M H, Kostrikin I P, Gabrielyan L. Chem. Phys. Lett., 2013, 588:37.
[91] Wu Y Y, Zhao F Q, Ju X H. Comput. Theor. Chem., 2014, 1027:151.
[92] Xu C, Cheng L J, Yang J L. J. Chem. Phys., 2014, 141:124301.
[93] Cheng S B, Berkdemir C, Castleman A W. Phys. Chem. Chem. Phys., 2014, 16:533.
[94] Bai H, Chen Q, Zhai H J, Li S D. Angew. Chem. Int. Ed. Engl., 2015, 54:941.
[95] Chen Q, Gao T, Tian W J, Bai H, Zhang S Y, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2015, 17:19690.
[96] Fa W, Chen S, Pande S, Zeng X C. J. Phys. Chem. A, 2015, 119:11208.
[97] Jin P, Hou Q H, Tang C C, Chen Z F. Theor. Chem. Acc., 2015, 134.
[98] Chen Q, Li H R, Miao C Q, Wang Y J, Lu H G, Mu Y W, Ren G M, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2016, 18:11610.
[99] Tam N M, Pham H T, Duong L V, Pham-Ho M P, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:3000.
[100] Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I. J. Phys. Chem. A, 2006, 110:1689.
[101] Zhai H J, Miao C Q, Li S D, Wang L S. J. Phys. Chem. A, 2010, 114:12155.
[102] Chen Q, Bai H, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 139:044308.
[103] Chen Q, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 138:084306.
[104] Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B. Nano Lett., 2008, 8:157.
[105] Li F, Zhao J J, Chen Z F. Nanotechnology, 2010, 21:134006.
[106] Jia J F, Ma L J, Wang J F, Wu H S. J. Mol. Model., 2013, 19:3255.
[107] Jia J F, Li X R, Li Y A, Ma L J, Wu H S. Comput. Theor. Chem., 2014, 1027:128.
[108] 王转玉(Wang Z Y), 康伟利(Kang W L), 贾建峰(Jia J F), 武海顺(Wu H S). 物理学报(Acta Phys. Sin.), 2014, 63:233102.
[109] Xie S Y, Li X B, Tian W Q, Chen N K, Zhang X L, Wang Y L, Zhang S B, Sun H B. Phys. Rev. B, 2014, 90.
[110] Zheng Q, Wagner F R, Ormeci A, Prots Y, Burkhardt U, Schmidt M, Schnelle W, Grin Y, Leithe-Jasper A. Chem.-Eur. J., 2015, 21:16532.
[111] Wu C, Wang H, Zhang J J, Gou G Y, Pan B C, Li J. ACS Appl. Mater. Interfaces, 2016, 8:2526.
[112] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G. Chin. Phys. B, 2014, 23:033101.
[113] 阮文(Ruan W), 余晓光(Yu X G), 谢安东(Xie A D), 伍冬兰(Wu D L), 罗文浪(Luo W L). 物理学报(Acta Phys. Sin.), 2014, 63:243101.
[114] Liao R B, Chai L L, Zhu Y. Int. J. Quantum Chem., 2015, 115:216.
[115] Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:11833.
[116] Böyükata M, Güvenç Z B. Int. J. Hydrogen Energy, 2011, 36:8392.
[117] Li L F, Xu C, Cheng L J. Comput. Theor. Chem., 2013, 1021:144.
[118] Li L F, Xu C, Jin B K, Cheng L J. J. Chem. Phys., 2013, 139:174310.
[119] Hou J H, Duan Q, Qin J M, Shen X D, Zhao J X, Liang Q C, Jiang D Y, Gao S. RSC Adv., 2015, 5:38873.
[120] Li S D, Guo J C, Miao C Q, Ren G M. Angew. Chem. Int. Ed., 2005, 44:2158.
[121] Fokwa B P, Hermus M. Angew. Chem. Int. Ed., 2012, 51:1702.
[122] Mbarki M, St Touzani R, Fokwa B P. Angew. Chem. Int. Ed., 2014, 53:13174.
[123] Yuan Y, Cheng L J. J. Chem. Phys., 2013, 138:024301.
[124] Li L F, Xu C, Jin B K, Cheng L J. Dalton Trans., 2014, 43:11739.
[125] Mondal B, Mondal B, Pal K, Varghese B, Ghosh S. Chem. Commun., 2015, 51:3828.
[126] Islas R, Heine T, Ito K, Schleye P v R, Merino G. J. Am. Chem. Soc., 2007, 129:14767.
[127] Averkiev B B, Boldyrev A I. Russ. J. Gen. Chem., 2008, 78:769.
[128] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2011, 50:9334.
[129] Li W L, Ivanov A S, Federic J, Romanescu C, Cernusak I, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 139:104312.
[130] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 138:134315.[FL)] [ST] [WT] [LM]
[1] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[2] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[3] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[4] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[5] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[8] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[9] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[12] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[13] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[14] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[15] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
Viewed
Full text


Abstract