中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 166-178 DOI: 10.7536/PC170910 Previous Articles   Next Articles

• Review •

Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space

Yan Zhang1,2, Xuejie Liu2, Nan Yan2, Yuexin Hu1*, Haiying Li1*, Yutian Zhu2*   

  1. 1. School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, China;
    2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Science Project of Liaoning Province Education Office(No. L2016001), the Scientific Research Cultivation Fund of LSHU (No.2016PY-004), and the Doctoral Scientific Research Foundation of Liaoning Province(No.20170520284).
PDF ( 637 ) Cited
Export

EndNote

Ris

BibTeX

Under the three-dimensional(3D) confinement, block copolymers(BCPs) can self-assemble into various well-ordered nanostructures, which have versatile applications in the fields of catalyst carrier, electronics, optical sensor, and so on. It is known that the nature of the BCPs as well as the internal nanostructures and the external shapes of the self-assembled materials significantly influence their properties and applications. This review introduces the recent progress in the self-assembly methods for the 3D confined self-assembly of block copolymers. The internal and external factors that affect the self-assembled structures of BCPs are also summarized. The internal factors mainly refer to the nature of BCPs, including the block type, molecular weight and block volume fraction of different blocks. The external factors include the size of confined space, the oil/water interfacial interaction, thermal or solvent annealing treatment, and so on. Moreover, the co-assembly of BCPs and inorganic nanoparticles(NPs) under 3D soft confinement is also reviewed. The morphological transition after incorporating NPs and the controllable distribution and localization of NPs within BCP matrix, as well as the potential applications of the resulting hybrid structures are discussed. Finally, open questions on this issue are discussed and prospects of this field are described.
Contents
1 Introduction
2 Self-assembly of BCPs under 3D soft confinement
2.1 Overview of the methods of the 3D soft confined self-assembly
2.2 Factors affecting the self-assembly structures
2.3 Other methods for tuning the self-assembly structures
3 Co-assembly of BCPs and NPs under 3D soft confinement
3.1 Morphological transition induced by NPs
3.2 Controllable distribution and localization of NPs in BCP matrix
4 Applications of the 3D soft confined assembly of BCPs
5 Conclusion

CLC Number: 

[1] Bockstaller M R, Thomas E L. J. Phys. Chem. B, 2003, 107:10017.
[2] Karimi M, Zangabad P S, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Asl H G, Mandieh Z, Bozorgomid M, Ghasemi A, Boyuk M R R T, Hamblin M R. ACS Appl. Mater. Interfaces, 2016, 8:21107.
[3] Ikkala O, ten Brinke G. Science, 2002, 295:2407.
[4] Liu S, Xu T. Macromolecules, 2016, 49:6075.
[5] Lee J, Ku K H, Kim M, Shin J M, Han J, Park C H, Yi G R, Jang S G, Kim B J. Adv. Mater., 2017, 29(29):1700608.
[6] Park M K, Jun S, Kim I, Jin S M, Kim J G, Shin T J, Lee E. Adv. Funct. Mater., 2015, 25:4570.
[7] Yan N, Zhu Y T, Jiang W. J. Phys. Chem. B, 2016, 120:12023.
[8] Higuchi T, Motoyoshi K, Sugimori H, Jinnai H, Yabu H, Shimomura M. Macromol. Rapid Commun., 2010, 31:1773.
[9] Deng R H, Liang F X, Li W K, Yang Z Z, Zhu J T. Macromolecules, 2013, 46:7012.
[10] Yan N, Yang X P, Zhu Y T, Xu J P, Sheng Y P. Macromol. Chem. Phys., 2012, 213:2261.
[11] Sheng Y P, An J, Zhu Y T. Chem. Phys., 2015, 452:46.
[12] Xu J P, Wang K, Li J Y, Zhou H M, Xie X L, Zhu J T. Macromolecules, 2015, 48:2628.
[13] Bates F S, Fredrickson G H. Phys. Today, 1999, 52:32.
[14] Matsushita Y, Suzuki J. Macromolecules, 1998, 31:2378.
[15] Lee B, Lo C T, Seifert S, Rago N L D, Winans R E, Thiyagarajan P. Macromolecules, 2007, 40:4235.
[16] Lo C T, Lee B, Pol V G, Rago N L D, Seifert S, Winans R E, Thiyagarajan P. Macromolecules, 2007, 40:8302.
[17] van Hest J C M, Delnoye D A P, Baars M W P L, van Genderen M H P, Meijer E W. Science, 1995, 268:1592.
[18] Zhang L F, Eisenberg A. Science, 1995, 268:1728.
[19] Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41:5969.
[20] Han Y Y, Yu H Z, Du H B, Jiang W. J. Am. Chem. Soc., 2010, 132:1144.
[21] He X H, Schmid F. Macromolecules, 2006, 39:2654.
[22] He X H, Schmid F. Phys. Rev. Lett., 2008, 100:137802.
[23] 盛玉萍(Sheng Y P), 闫南(Yan N), 朱雨田(Zhu Y T), 安健(An J). 化学进展(Progress in Chemistry), 2014, 26:358.
[24] 张连斌(Zhang L B), 王珂(Wang K), 朱锦涛(Zhu J T). 高分子学报(Acta Polymerica Sinica), 2017, 8(8):1261.
[25] Xu J P, Yang Y, Wang K, Wu Y Q, Zhu J T. Mater. Chem. Front., 2017, 1:507.
[26] Wu Y Q, Wang K, Tan H Y, Xu J P, Zhu J T. Langmuir, 2017, 33:9889.
[27] Deng R H, Li H, Liang F X, Zhu J T, Li B H, Xie X L, Yang Z Z. Macromolecules, 2015, 48:5855.
[28] 邓仁华(Deng R H). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2015.
[29] Yan N, Sheng Y P, Liu H X, Zhu Y T, Jiang W. Langmuir, 2015, 31:1660.
[30] Tsai C C, Chen J T. Langmuir, 2015, 31:2569.
[31] Zoelen W V, Brinke G T. Soft Matter, 2009, 5:1568.
[32] Bang J, Kim S H, Drockenmuller E, Misner M J, Russell T P, Hawker C J. J. Am. Chem. Soc., 2006, 128:7622.
[33] Ku K H, Kim Y, Yi G R, Jung Y S, Kim B J. ACS Nano, 2015, 9:11333.
[34] Higuchi T. Polym. J., 2017, 49:467.
[35] Yan N, Liu H X, Zhu Y T, Jiang W, Dong Z Y. Macromolecules, 2015, 48:5980.
[36] Bae J, Lawrence J, Miesch C, Ribbe A, Li W K, Emrick T, Zhu J T, Hayward R C. Adv. Mater., 2012, 24:2735.
[37] Yabu H, Jinno T, Koike K, Higuchi T, Shimomura M. J. Polym. Sci., Part B:Polym. Phys., 2011, 49:1717.
[38] Jeon S J, Yang S M, Kim B J, Petrie J D, Jang S G, Kramer E J, Pine D J, Yi G R. Chem. Mater., 2009, 21:3739.
[39] Chen P Y, Yang Y, Dong B J, Huang Z H, Zhu G L, Cao Y F, Yan L T. Macromolecules, 2017, 50:2078.
[40] Ma C, Wu H, Huang Z H, Guo R H, Hu M B, Kübel C, Yan L T, Wang W. Angew.Chem. Int.Ed., 2015, 54:15699.
[41] Liu Y J, He J, Yang K K, Yi C L, Liu Y, Nie L M, Khashab N M, Chen X Y, Nie Z H. Angew.Chem. Int.Ed., 2015, 54:15809.
[42] Liu Z Y, Guo R H, Xu G X, Huang Z H, Yan L T. Nano Lett., 2014, 14:6910.
[43] Nakano T, Kawaguchi D, Matsushita Y. J. Am. Chem. Soc., 2013, 135:6798.
[44] Kao J, Bai P, Chuang V P, Jiang Z, Ercius P, Xu T. Nano Lett., 2012, 12:2610.
[45] Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S. ACS Nano, 2012, 6:2056.
[46] Shin J M, Kim Y, Yun H, Yi G R, Kim B J. ACS Nano, 2017, 11:2133.
[47] Yan N, Zhu Y T, Jiang W. Soft Matter, 2016, 12:965.
[48] Thomas E L, Reffner J R, Bellare J. J. Phys., 1990, 51:C7363.
[49] Zhang K, Yu X L, Gao L, Chen Y M, Yang Z Z. Langmuir, 2008, 24:6542.
[50] Zhang K, Gao L, Chen Y M, Yang Z Z. J. Colloid Interface Sci., 2010, 346:48.
[51] Yabu H. Polym. J., 2013, 45:261.
[52] Arita T, Kanahara M, Motoyoshi K, Koike K, Higuchi T, Yabu H. J. Mater. Chem. C, 2013, 1:207.
[53] Zhang J, Kong W X, Duan H M. Langmuir, 2017, 33:3123.
[54] Chi P, Wang Z, Li B H, Shi A C. Langmuir, 2011, 27:11683.
[55] Yabu H, Higuchi T, Jinnai H. Soft Matter, 2014, 10:2919.
[56] Sheng Y P, Xia L, Yang G Z, Xia Y Q, Huang Y, Pan C J, Zhu Y T. RSC Adv., 2017, 7:38666.
[57] Hagy M C, Hernandez R. J. Chem. Phys., 2014, 140:034701.
[58] Deng R H, Li H, Zhu J T, Li B H, Liang F X, Jia F, Qu X Z, Yang Z Z. Macromolecules, 2016, 49:1362.
[59] Schmidt B V K J, Elbert J, Scheid D, Hawker C J, Klinger D, Gallei M. ACS Macro Lett., 2015, 4:731.
[60] Xu J P, Wu Y Q, Wang K, Shen L, Xie X L, Zhu J T. Soft Matter, 2016, 12:3683.
[61] Klinger D, Wang C X, Connal L A, Audus D J, Jang S G, Kraemer S, Killops K L, Fredrickson G H, Kramer E J, Hawker C J. Angew.Chem. Int.Ed., 2014, 53:7018.
[62] Zhu J T, Hayward R C. Angew.Chem. Int.Ed., 2008, 47:2113.
[63] Wang Z, Cao Y Y, Zhang X Y, Wang D G, Liu M, Xie Z G, Wang Y P. Langmuir, 2016, 32:13517.
[64] Ku K H, Shin J M, Klinger D, Jang S G, Hayward R C, Hawker C J, Kim B J. ACS Nano, 2016, 10:5243.
[65] Kempe K, Wylie R A, Dimitriou M D, Tran H, Hoogenboom R, Schubert U S, Hawker C J, Campos L M, Connal L A. J. Polym. Sci., Part A:Polym. Chem., 2016, 54:750.
[66] Chen C, Xiao Z Y, Connal L A. Aust. J. Chem., 2016, 69:741.
[67] Jeon S J, Yi G R, Yang S M. Advanced Materials, 2008, 20:4103.
[68] Higuchi T, Tajima A, Motoyoshi K, Yabu H, Shimomura M. Angew.Chem. Int.Ed., 2008, 47:8044.
[69] Jeon S J, Yi G R, Koo C M, Yang S M. Macromolecules, 2007, 40:8430.
[70] Shin J M, Kim M P, Yang H, Ku K H, Jang S G, Youm K H, Yi G R, Kim B J. Chem. Mater., 2015, 27:6314.
[71] Liu S Q, Deng R H, Shen L, Xie X L, Zhu J T. Macromolecules, 2015, 48:5944.
[72] Higuchi T, Motoyoshi K, Sugimori H, Jinnai H, Yabu H, Shimomura M. Soft Matter, 2012, 8:3791.
[73] Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C, Russell T P. Macromolecules, 2010, 43:7807.
[74] Higuchi T, Shimomura M, Yabu H. Macromolecules, 2013, 46:4064.
[75] Deng R H, Liu S Q, Liang F X, Wang K, Zhu J T, Yang Z Z. Macromolecules, 2014, 47:3701.
[76] Deng R H, Liu S Q, Li J Y, Liao Y G, Tao J, Zhu J T. Adv. Mater., 2012, 24:1889.
[77] Pisani E, Ringard C, Nicolas V, Raphaël E, Rosilio V, Moine L, Fattal E, Tsapis N. Soft Matter, 2009, 5:3054.
[78] Xu J P, Yang Y, Wang K, Li J Y, Zhou H M, Xie X L, Zhu J T. Langmuir, 2015, 31:10975.
[79] Deng R H, Liang F X, Li W K, Liu S Q, Liang R J, Cai M G, Yang Z Z, Zhu J T. Small, 2013, 9:4099.
[80] Higuchi T, Tajima A, Yabu H, Shimomura M. Soft Matter, 2008, 4:1302.
[81] Zhu J T, Ferrer N, Hayward R C. Soft Matter, 2009, 5:2471.
[82] Hussain M, Xie J, Hou Z Y, Shezad K, Xu J P, Wang K, Gao Y J, Shen L, Zhu J T. ACS Appl. Mater. Interfaces, 2017, 9:14391.
[83] Zhu J T, Hayward R C. J. Am. Chem. Soc., 2008, 130:7496.
[84] Liu S Q, Deng R H, Li W K, Zhu J T. Adv. Funct. Mater., 2012, 22:1692.
[85] Yang H, Kang D J, Ku K H, Cho H H, Park C H, Lee J, Lee D C, Ajayan P M, Kim B J. ACS Macro Lett., 2014, 3:985.
[86] Kim M P, Ku K H, Kim H J, Jang S G, Yi G R, Kim B J. Chem. Mater., 2013, 25:4416.
[87] Ku K H, Kim M P, Paek K, Shin J M, Chung S, Jang S G, Chae W S, Yi G R, Kim B J. Small, 2013, 9:2667.
[88] He Y, Zhang Y, Yan N, Zhu Y T, Jiang W, Shi D. Nanoscale, 2017, 9:15056.
[89] Yan N, Zhang Y, He Y, Zhu Y T, Jiang W. Macromolecules, 2017, 50:6771.
[90] Zhang Y, He Y, Yan N, Zhu Y T, Hu Y X. J. Phys. Chem. B, 2017, 121:8417.
[91] Wang N X, Liao Y G, Deng R H, Liu S Q, Cao N, Tan B, Zhu J T, Xie X L. Soft Matter, 2012, 8:2697.
[92] Hickey R J, Luo Q J, Park S J. ACS Macro Lett., 2013, 2:805.
[93] Yang H, Ku K H, Shin J M, Lee J, Park C H, Cho H H, Jang S G, Kim B J. Chem. Mater., 2016, 28:830.
[94] Jang S G, Audus D J, Klinger D, Krogstad D V, Kim B J, Cameron A, Kim S W, Delaney K T, Hur S M, Killops K L, Fredrickson G H, Kramer E J, Hawker C J. J. Am. Chem. Soc., 2013, 135:6649.
[95] Ku K H, Yang H, Shin J M, Kim B J. J. Polym. Sci., Part A:Polym. Chem., 2015, 53:188.
[96] Deng R H, Liang F X, Qu X Z, Wang Q, Zhu J T, Yang Z Z. Macromolecules, 2015, 48:750.
[97] Kim M P, Kang D J, Jung D W, Kannan A G, Kim K H, Ku K H, Jang S G, Chae W S, Yi G R, Kim B J. ACS Nano, 2012, 6:2750.
[98] Wang J Y, Li W K, Zhu J T. Polymer, 2014, 55:1079.
[99] Thompson R B, Ginzburg V V, Matsen M W, Balazs A C. Science, 2001, 292:2469.
[100] Nie X B, Zhang Y, Wang M, Jiang W. New J. Chem., 2016, 40:4556.
[101] Ku K H, Shin J M, Kim M P, Lee C H, Seo M K, Yi G R, Jang S G, Kim B J. J. Am. Chem. Soc., 2014, 136:9982.
[102] Xu J P, Li J, Yang Y, Wang K, Xu N, Li J Y, Liang R J, Shen L, Xie X L, Tao J, Zhu J T. Angew.Chem. Int.Ed., 2016, 55:14633.
[103] Staff R H, Gallei M, Mazurowski M, Rehahn M, Berger R, Landfester K, Crespy D. ACS Nano, 2012, 6:9042.
[104] Zhao Y, Berger R, Landfester K, Crespy D. Small, 2015, 11:2995.
[105] Pisani E, Tsapis N, Galaz B, Santin M, Berti R, Taulier N, Kurtisovski E, Lucidarme O, Ourevitch M, Doan B T, Beloeil J C, Gillet B, Urbach W, Bridal S L, Fattal E. Adv. Funct. Mater., 2008, 18:2963.
[106] Deng R H, Derry M J, Mable C J, Ning Y, Armes S P. J. Am. Chem. Soc., 2017, 139:7616.
[107] Staff R H, Rupper P, Lieberwirth I, Landfester K, Crespy D. Soft Matter, 2011, 7:10219.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.