中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 426-434 DOI: 10.7536/PC161234 Previous Articles   Next Articles

• Review •

Synthesis and Dehydrogenation of Hydrazine Borane

Shiliang Zhang, Qilu Yao, Zhanghui Lu*   

  1. Jiangxi Inorganic Membrane Materials Engineering Research Centre, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21463012, 21103074)and the Natural Science Foundation of Jiangxi Province of China (No. 2016BAB203087).
PDF ( 1887 ) Cited
Export

EndNote

Ris

BibTeX

Hydrazine borane (N2H4BH3, HB) is considered as a highly promising hydrogen storage material due to its high hydrogen content (15.4 wt%), easy preparation, and good physical and chemical properties. Hydrogen can be produced from hydrazine borane via pyrolysis, methanolysis and hydrolysis reaction. Especially, a promising approach for complete hydrogen production from N2H4BH3 is by hydrolysis of the BH3 group and selective decomposition of the N2H4 moiety of N2H4BH3, corresponding to a theoretical gravimetric hydrogen storage capacity (GHSC) of 10 wt% for the system N2H4BH3-3H2O. The GHSC of N2H4BH3 is much higher than those of benchmark hydrogen storage systems NaBH4-4H2O (7.3 wt%), NH3BH3-4H2O (5.9 wt%), and N2H4·H2O (8.0 wt%). The suitable catalyst is essential for complete hydrogen generation from N2H4BH3. In this paper, the synthesis and characterizations of hydrazine borane are briefly introduced. The developments of catalytic systems for hydrogen production from hydrolysis of the BH3 group and dehydrogenation of the N2H4 moiety of hydrazine borane at mild conditions are significantly reviewed. Moreover, the mechanism of hydrogen production from hydrazine borane is concisely analyzed and the application prospects of hydrazine borane are also remarked in this review.

Contents
1 Introduction
2 Synthesis and characterization of hydrazine borane
2.1 Synthesis
2.2 Molecular and structural analyses
3 Dehydrogenation of hydrazine borane
3.1 Hydrolysis of the BH3 group of hydrazine borane
3.2 Hydrolysis of the BH3 group and dehydrogenation of the N2H4 moiety of hydrazine borane
3.3 Reaction mechanism of complete dehydrogenation of hydrazine borane
4 Conclusion

CLC Number: 

[1] Schlapbach L, Züttel A. Nature, 2001, 414: 353.
[2] 张磊(Zhang L), 涂倩(Tu Q), 陈学年(Chen X N), 刘蒲(Liu P). 化学进展(Progress in Chemistry), 2014, 26(5): 749.
[3] Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Energy Environ. Sci., 2008, 1: 79.
[4] Ball M, Wietschel M. Int. J. Hydrogen Energy, 2009, 34: 615.
[5] Yang J, Sudik A, Wolverton C, Siegel D. Chem. Soc. Rev., 2010, 39: 656.
[6] Weidenthaler C, Felderhoff M. Energy Environ. Sci., 2011, 4: 2495.
[7] Dalebrook A F, Gan W J, Grasemann M, Moret S, Gabor L. Chem. Commun., 2013, 49: 8735.
[8] 徐东彦(Xu D Y), 张华民(Zhang H M), 叶威(Ye W). 化学进展(Progress in Chemistry), 2007, 19(10): 1599.
[9] Zahmakiran M, Özkar S. J. Mol. Catal. A: Chem., 2006, 258: 95.
[10] Marrero-Alfonso E Y, Gray J R, Davis T A, Matthews M A. Int. J. Hydrogen Energy, 2007, 32: 4723.
[11] 梁艳(Liang Y), 王平(Wang P), 戴洪斌(Dai H B). 化学进展(Progress in Chemistry), 2009, 21(10): 2220.
[12] Wang H X, Zhao Y R, Cheng F Y, Tao Z L, Chen J. Catal. Sci. Technol., 2016, 6: 3443.
[13] Yao Q L, Lu Z H, Jia Y S, Chen X S, Liu X. Int. J. Hydrogen Energy, 2015, 40: 2207.
[14] Hu Y J, Lu Z H, Wang Y Q, Chen X S, Xiong L H. Appl. Surf. Sci., 2015, 341: 185.
[15] Shen J, Yang L, Hu K, Luo W, Cheng G. Int. J. Hydrogen Energy, 2015, 40: 1062.
[16] Yao Q L, Shi W M, Feng G, Lu Z H, Zhang X L, Tao D J, Kong D J, Chen X S. J. Power Sources, 2014, 257: 293.
[17] Yang Y W, Feng G, Lu Z H, Hu N, Zhang F, Chen X S. Acta Phys. Chim. Sin., 2014, 30: 1180.
[18] Lu Z H, Li J P, Feng G, Yao Q L, Zhang F, Zhou R Y, Tao D J, Chen X S, Yu Z Q. Int. J. Hydrogen Energy, 2014, 39: 13389.
[19] Yao Q L, Shi Y, Zhang X L, Chen X S, Lu Z H. Chem. Asian J., 2016, 22: 3251.
[20] Chen W Y, Li D, Wang Z J, Qian G, Sui Z J, Duan X Z, Zhou X G, Yeboah I, Chen D. AIChE J., 2017, 63: 60.
[21] Yao Q L, Lu Z H, Wang Y Q, Chen X S, Feng G. J. Phys. Chem. C, 2015, 119: 14167.
[22] Yang Y W, Lu Z H, Hu Y J, Zhang Z J, Shi W M, Chen X S, Wang T T. RSC Adv., 2014, 4: 13749.
[23] Sanyal U, Demirci U B, Jagirdar B R, Miele P. ChemSusChem., 2011, 4: 1731.
[24] Li Z Y, Zhu G S, Lu G Q, Qiu S L, Yao X D. J. Am. Chem. Soc., 2010, 132: 1490.
[25] Yang Y W, Lu Z H, Chen X S. Mater. Technol., 2015, 30: 89.
[26] Xu Q, Chandra M. J. Power Sources, 2006. 163: 364.
[27] Yao Q L, Huang M, Lu Z H, Yang Y W, Zhang Y X, Chen X S, Yang Z. Dalton Trans., 2015, 44: 1070.
[28] Yao Q L, Lu Z H, Hu Y J, Chen X S. RSC Adv., 2016, 6: 89450.
[29] Akbayrak S, Tonbul Y, Özkar S. Appl. Catal. B: Environ., 2016, 198: 162.
[30] Yao Q L, Lu Z H, Huang W, Chen X S, Zhu J. J. Mater. Chem. A, 2016, 4: 8579.
[31] Lu Z H, Li J P, Zhu A L, Yao Q L, Huang W, Zhou R Y, Zhou R F, Chen X S. Int. J. Hydrogen Energy, 2013, 38: 5330.
[32] Singh S K, Singh A K, Aranishi K, Xu Q. J. Am. Chem. Soc., 2011, 133:19638.
[33] Song-II O, Yan J M, Wang H L, Wang Z L, Jiang Q. J. Power Sources, 2014, 262: 386.
[34] Chen J M, Yao Q L, Zhu J, Chen X S, Lu Z H. Int. J. Hydrogen Energy, 2016, 41: 3946.
[35] Wang J, Li W, Wen Y R, Gu L, Zhang Y. Adv. Energy Mater., 2015, 5: 1401879.
[36] Wang H L, Yan J M, Li S J, Zhang X W, Jiang Q. J. Mater. Chem. A, 2015, 3: 121.
[37] Moury R, Demirci U B. Energies, 2015, 8: 3118.
[38] Zhigach A F, Zakharov V V, Manelis G B, Nechiporenko G N, Nikitin V S, Esel’son B M. Zh. Neorg. Khim., 1973, 18: 1762.
[39] Hügle T, Kühnel M F, Lentz D. J. Am. Chem. Soc., 2009, 131: 7444.
[40] Zhong D C, Aranishi K, Singh A K. Demirci U B, Xu Q. Chem. Commun., 2012, 48: 11945.
[41] Goubeau V J, Ricker E Z. Anorg. Allg. Chem., 1961, 310:123.
[42] Gunderloy F C. US 3375087, 1968.
[43] Gunderloy F C. Inorg. Chem., 1963, 2: 221.
[44] Gunderloy F C. US 3159451, 1964.
[45] Uchida H S, Hefferan G T. US 3119652, 1964.
[46] Moury R, Moussa G, Demirci U B, Hannauer J, Bernard S, Petit E, Lee A, Miele P. Phys. Chem. Chem. Phys., 2012, 14: 1768.
[47] Mebs S, Grabowsky S, Förster D, Kickbusch R, Hartl M, Daemen L L, Morgenroth W, Luger P, Paulus B, Lentz D J. Phys.Chem. A, 2010, 114: 10185.
[48] Zhang Z J, Lu Z H, Chen X S. J. Mater. Chem. A, 2015, 3: 23520.
[49] Karahan S, Zahmakran M, Özkar S. Int. J. Hydrogen Energy, 2011, 36: 4958.
[50] Celik D, Karahan S, Zahmakiran M, Özkar S. Int. J. Hydrogen Energy, 2012, 37: 5143.
[51] Tunç N, Abay B, Rakap M. J. Power Sources, 2015, 299: 403.
[52] Yao Q L, Lu Z H, Yang K K, Chen X S, Zhu M H. Sci. Rep., 2015, 5: 15186.
[53] Sencanli S, Karahan S, Özkar S. Int. J. Hydrogen Energy, 2013, 38: 14693.
[54] Karahan S, Özkar S. Int. J. Hydrogen Energy, 2015, 40: 2255.
[55] Yao Q L, Lu Z H, Zhang Z J, Chen X S, Lan Y Q. Sci. Rep., 2014, 4: 7597.
[56] Yang K K, Yao Q L, Huang W, Chen X W, Lu Z H. Int. J. Hydrogen Energy, 2016, DOI: 10.1016/j.ijhydene.2016.12.029.
[57] Karahan S, Zahmakiran M, Özkar S. Dalton Trans., 2012, 41: 4912.
[58] Özhava D, K?l?caslan N Z, Özkar S. Appl. Catal. B: Environ., 2015, 162: 573.
[59] Singh S K, Xu Q. J. Am. Chem. Soc., 2009, 131:18032.
[60] He L, Huang Y, Wang A, Wang A, Chen X, Delgado J J, Zhang T. Angew. Chem., Int. Ed., 2012, 51: 6191.
[61] Yao Q L, Chen X S, Lu Z H. Energy Environ. Focus, 2014, 3: 236.
[62] Singh S K, Lu Z H, Xu Q. European J. Inorg. Chem., 2011, 14: 2232.
[63] Hannauer J, Akdim Q, Demirci U B, Geantet C, Herrmann J M, Miele P, Xu Q. Energ. Environ. Sci., 2011, 4: 3355.
[64] Hannauer J, Demirci U B, Geantet C, Herrmannb J M, Miele P. Int. J. Hydrogen Energy, 2012, 37: 10758.
[65] Aziza W B, Petit J F, Demirci U B, Xu Q, Miele P. Int. J. Hydrogen Energy, 2014, 39: 16919.
[66] Hannauer J, Akdim O, Demirci U B, Geantet C, Herrmann J M, Miele P, Xu Q. Int. J. Hydrogen Energy, 2012, 37: 9722.
[67] Li C M, Dou Y B, Liu J, Chen Y D, He S, Wei M, Evans D G, Duan X. Chem. Commun., 2013, 49: 9992.
[68] Clemençon D, Petit J F, Demirci U B, Xu Q, Miele P. J. Power Sources, 2014, 260: 77.
[69] Zhu Q L, Zhong D C, Demirci U B, Xu Q. ACS Catal., 2014, 4: 4261.
[70] Zhang Z J, Wang Y Q, Chen X S, Lu Z H. J. Power Sources, 2015, 291: 14.
[71] Zhang Z J, Lu Z H, Chen X S. ACS Sustain. Chem. Eng., 2015, 3: 1255.
[72] 卢章辉(Lu Z H), 张主军(Zhang Z J), 陈祥树(Chen X S). ZL 201410214740.9, 2017.
[73] 张主军(Zhang Z J). 江西师范大学硕士论文(Master Dissertation of Jiangxi Normal University), 2016.
[74] Chen J M, Lu Z H, Hang W, Kang Z B, Chen X S. J. Alloys Compd., 2017, 695: 3036.
[75] 贺艳斌(He Y B). 山西师范大学博士论文(Doctoral Dissertation of Shanxi Normal University), 2015.
[76] Block J, Schulz E G. J. Catal., 1973, 30: 327.
[77] Falconer J L, Wise H. J. Catal., 1976, 43: 220.
[78] 贺雷(He L), 黄延强(Huan Y Q), 王爱琴(Wang A Q), 王晓东(Wang X D), 张涛(Zhang T). 化工进展(Chemical Industry and Engineer Progress), 2014, 33(11): 2956.
[79] Lu Z H, Yao Q L, Zhang Z J, Yang Y W, Chen X S. J. Nanomater., 2014, 729029.
[80] Lu Z H, Xu Q. Funct. Mater. Lett., 2012, 5 (1): 1230001.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.