English
新闻公告
More
化学进展 2024, Vol. 36 Issue (2): 177-186 DOI: 10.7536/PC230613 前一篇   后一篇

• 综述 •

以水为原料的过氧化氢原位制备方法

于敬泽1, 谢腾峰2,*()   

  1. 1 吉林大学新能源与环境学院 长春 130021
    2 吉林大学化学学院 长春 130012
  • 收稿日期:2023-06-19 修回日期:2023-11-11 出版日期:2024-02-24 发布日期:2024-01-08
  • 作者简介:

    谢腾峰 教授、博士生导师,研究方向:能源与环境光催化、太阳能电池、光生电荷检测谱仪开发、光电化学。

  • 基金资助:
    国家自然科学基金项目(22172057)

In-situ Preparation Methods of Hydrogen Peroxide via Water Oxdation

Jingze Yu1, Tengfeng Xie2()   

  1. 1 College of New Energy and Environment, Jilin University, Changchun 130021, China
    2 College of Chemistry, Jilin University, Changchun 130012, China
  • Received:2023-06-19 Revised:2023-11-11 Online:2024-02-24 Published:2024-01-08
  • Contact: *e-mail: xietf@jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22172057)

过氧化氢(H2O2)是一种重要的化学品,可作为清洁的消毒剂,主要采用蒽醌法集中生产,运输和储存过程存在爆炸风险,因此需要开发原位制备方法。以氧气为原料的电化学还原和光催化还原已被广泛关注,但反应在气液固三相界面进行,设备复杂、产量受限。以水为原料的固液界面氧化过程也是原位产生H2O2的重要途径,本文概述电化学、光催化等氧化水制备H2O2的常见方法,重点介绍热催化、超声压电、等离子体、微液滴等研究近期出现的原位制备过氧化氢新方法,为过氧化氢原位制备,特别是消毒领域的研究者提供参考。

Hydrogen peroxide (H2O2) is an important chemical that may be used as a clean disinfectant. For scale application, H2O2 is produced primarily by the anthraquinone process. The necessary transportation and storage processes bring explosion risks, so it is urgent to develop in-situ preparation methods. Electrochemical and photocatalytic reduction of oxygen to product H2O2 have received wide attention, but these reactions are carried out at the gas-liquid-solid interface. This three-phase reaction requires complex equipment and sequentially limits large-scale production. Another equally important pathway for in-situ H2O2 production is the oxidation of water which needs only solid-liquid two-phase interface. This paper summarizes the common methods of oxidizing water to prepare H2O2, such as electrochemistry and photocatalysis, and focuses on the recent new methods of in-situ H2O2 preparation, including thermal catalysis, ultrasonic piezoelectricity, plasma and microdroplet method. These methods provide the references for in-situ H2O2 production and in particular its utilization in the field of disinfection.

Contents

1 Industrial process for the production of hydrogen peroxide

2 In-situ production of hydrogen peroxide via oxygen reduction reaction

3 In-situ production of hydrogen peroxide via water oxidation reaction

3.1 Electrochemical and photocatalytic hydrogen peroxide generation from water oxidation

3.2 Thermocatalytic hydrogen peroxide generation

3.3 Ultrasonic piezoelectrical hydrogen peroxide generation

3.4 Electrical discharge plasma hydrogen peroxide generation

3.5 Generation of hydrogen peroxide from aqueous microdroplets

4 Conclusion and outlook

()
图1 电化学产H2O2反应器和反应路径示意图
Fig.1 Schematic diagram of electrochemical reactor and reaction route for H2O2 production
图2 光电化学产H2O2反应器和反应路径示意图
Fig.2 Schematic diagram of photo- electrochemical reactor and reaction route for H2O2 production
图3 超声作用下g-C3N4产H2O2的示意图
Fig.3 Schematic diagram of ultrasonic-driven generation of H2O2 over g-C3N4
表1 以水为原料现场产H2O2方法的对比
Table 1 Performance comparison of in-situ H2O2 preparation via water oxdation
[1]
Shi X J, Back S, Gill T M, Siahrostami S, Zheng X L. Chem, 2021, 7(1): 38.

doi: 10.1016/j.chempr.2020.09.013     URL    
[2]
Brillas E, Sirés I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.

doi: 10.1021/cr900136g     URL    
[3]
Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson A P R. J. Hosp. Infect., 2016, 93(1): 70.

doi: 10.1016/j.jhin.2016.01.016     URL    
[4]
Otter J A, Yezli S, Perl T M, Barbut F, French G L. J. Hosp. Infect., 2013, 83: 1.

doi: 10.1016/j.jhin.2012.10.002     URL    
[5]
Sun S X, Fan X X, Sun M J, Zhang H B, Tian L L, Zhang P P, Sun S F. Chin. J. Disinfect., 2022, 39(7): 494.
孙世雄, 樊晓旭, 孙明军, 张皓博, 田莉莉, 张培培, 孙淑芳. 中国消毒学杂志, 2022, 39(7): 494.)
[6]
Caruso A A, Del Prete A, Lazzarino A I. Med. Hypotheses, 2020, 144: 109910.

doi: 10.1016/j.mehy.2020.109910     URL    
[7]
Shen M-H, Singh R K. LWT-Food Sci. Technol., 2021, 142: 110986.

doi: 10.1016/j.lwt.2021.110986     URL    
[8]
Silva K J S, Sabogal-Paz L P. Water Air Soil Pollut., 2021, 232(12): 483.

doi: 10.1007/s11270-021-05434-3    
[9]
Yang M F, Feng B, Bai L G, Zhao X D. Chem. Propellants Polym. Mater., 2024, 22(1): 25.
杨盟飞, 冯彬, 白立光, 赵晓东. 化学推进剂与高分子材料, 2024, 22(1): 25.)
[10]
Ingle A A, Ansari S Z, Shende D Z, Wasewar K L, Pandit A B. Environ. Sci. Pollut. Res., 2022, 29(57): 86468.

doi: 10.1007/s11356-022-21354-z    
[11]
Li H B, Zheng B, Pan Z Y, Zong B N, Qiao M H. Front. Chem. Sci. Eng., 2018, 12(1): 124.

doi: 10.1007/s11705-017-1676-5     URL    
[12]
Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M. Chem. Sus. Chem., 2016, 9(24): 3374.

doi: 10.1002/cssc.v9.24     URL    
[13]
Liu H, Xue F F. China Pulp & Paper Industry., 2022, 43(6): 24.
(刘嚆, 薛飞飞. 中华纸业, 2022, 43(6): 24.)
[14]
Liang H R, Wang L, Liu G Z. Chemical Industry and Engineering Progress., 2021, 40(4): 2060.
(梁海瑞, 王涖, 刘国柱. 化工进展, 2021, 40(4): 2060.)
[15]
Wang N, Ma S B, Zuo P J, Duan J Z, Hou B R. Adv. Sci., 2021, 8(15): 2100076.
[16]
Li N, Huang C C, Wang X, Feng Y J, An J K. Chem. Eng. J., 2022, 450: 138246.

doi: 10.1016/j.cej.2022.138246     URL    
[17]
Shen P K. Fundamental and Aplications of Electrochemical Oxygen Reduction. Nanning: Guangxi Science and technology press, 2018. 11.
(沈培康. 电化学氧还原的理论基础和应用技术. 南宁: 广西科学技术出版社, 2018. 11.)
[18]
Ali I, Van Eyck K, De Laet S, Dewil R. Chemosphere, 2022, 308: 136127.

doi: 10.1016/j.chemosphere.2022.136127     URL    
[19]
Li D, Zheng T, Liu Y L, Hou D, Yao K K, Zhang W, Song H R, He H Y, Shi W, Wang L, Ma J. J. Hazard. Mater., 2020, 396: 122591.
[20]
Lima V N, Rodrigues C S D, Sampaio E F S, Madeira L M. J. Environ. Manag., 2020, 265: 110501.
[21]
Pérez J F, Galia A, Rodrigo M A, Llanos J, Sabatino S, Sáez C, Schiavo B, Scialdone O. Electrochim. Acta, 2017, 248: 169.

doi: 10.1016/j.electacta.2017.07.116     URL    
[22]
Santos G O S, Cordeiro-Junior P J M, Sánchez-Montes I, Souto R S, Kronka M S, Lanza M R V. Curr. Opin. Electrochem., 2022, 36: 101124.
[23]
Cao P K, Quan X, Zhao K, Zhao X Y, Chen S, Yu H T. ACS Catal., 2021, 11(22): 13797.

doi: 10.1021/acscatal.1c03236     URL    
[24]
Sui W B, Li W Z, Zhang Z S, Wu W X, Xu Z Y, Wang Y. J. Power Sources, 2023, 556: 232438.

doi: 10.1016/j.jpowsour.2022.232438     URL    
[25]
Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P. Chem., 2018, 4(1): 106.

doi: 10.1016/j.chempr.2017.10.013     URL    
[26]
Sun Y Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S, Spöri C, Schmies H, Wang H, Bernsmeier D, Paul B, Schmack R, Kraehnert R, Roldan Cuenya B, Strasser P. ACS Catal., 2018, 8(4): 2844.

doi: 10.1021/acscatal.7b03464     URL    
[27]
Zhu W Y, Chen S W. Electroanalysis, 2020, 32(12): 2591.

doi: 10.1002/elan.v32.12     URL    
[28]
Li S L, Ma J X, Xu F, Wei L Y, He D. Chem. Eng. J., 2023, 452: 139371.

doi: 10.1016/j.cej.2022.139371     URL    
[29]
Tian Y H, Deng D J, Xu L, Li M, Chen H, Wu Z Z, Zhang S Q. Nano Micro. Lett., 2023, 15(1): 122.

doi: 10.1007/s40820-023-01067-9    
[30]
Shin H, Lee S, Sung Y E. Curr. Opin. Electrochem., 2023, 38: 101224.
[31]
Mavrikis S, Perry S C, Leung P K, Wang L, Ponce de León C. ACS Sustainable Chem. Eng., 2021, 9(1): 76.

doi: 10.1021/acssuschemeng.0c07263     URL    
[32]
Pangotra D, Csepei L I, Roth A, Ponce de León C, Sieber V, Vieira L. Appl. Catal. B Environ., 2022, 303: 120848.

doi: 10.1016/j.apcatb.2021.120848     URL    
[33]
Espinoza-Montero P J, Alulema-Pullupaxi P, Frontana-Uribe B A, Barrera-Diaz C E. Curr. Opin. Solid State Mater. Sci., 2022, 26(3): 100988.

doi: 10.1016/j.cossms.2022.100988     URL    
[34]
Shi X J, Siahrostami S, Li G L, Zhang Y R, Chakthranont P, Studt F, Jaramillo T F, Zheng X L, Nørskov J K. Nat. Commun., 2017, 8: 701.

doi: 10.1038/s41467-017-00585-6    
[35]
Xia C, Back S, Ringe S, Jiang K, Chen F H, Sun X M, Siahrostami S, Chan K R, Wang H T. Nat. Catal., 2020, 3(2): 125.

doi: 10.1038/s41929-019-0402-8    
[36]
Wang Z L, Xu W H, Tan G Y, Duan X X, Yuan B C, Sendeku M G, Liu H, Li T S, Wang F M, Kuang Y, Sun X M. Sci. Bull., 2023, 68(6): 613.

doi: 10.1016/j.scib.2023.03.003     URL    
[37]
Fan L, Bai X W, Xia C, Zhang X, Zhao X H, Xia Y, Wu Z Y, Lu Y Y, Liu Y Y, Wang H T. Nat. Commun., 2022, 13: 2668.

doi: 10.1038/s41467-022-30251-5    
[38]
Dantas L R, Wollmann L C, Suss P H, Kraft L, Ribeiro V S T, Tuon F F. Cell Tissue Bank., 2021, 22(4): 643.

doi: 10.1007/s10561-021-09938-4    
[39]
Sun Y Y, Han L, Strasser P. Chem. Soc. Rev., 2020, 49(18): 6605.

doi: 10.1039/D0CS00458H     URL    
[40]
Cheng H, Cheng J, Wang L, Xu H X. Chem. Mater., 2022, 34(10): 4259.

doi: 10.1021/acs.chemmater.2c00936     URL    
[41]
Zhang E H, Zhu Q H, Huang J H, Liu J, Tan G Q, Sun C J, Li T, Liu S, Li Y M, Wang H Z, Wan X D, Wen Z H, Fan F T, Zhang J T, Ariga K. Appl. Catal. B Environ., 2021, 293: 120213.

doi: 10.1016/j.apcatb.2021.120213     URL    
[42]
Wang L X, Zhang J J, Zhang Y, Yu H G, Qu Y H, Yu J G. Small, 2022, 18(8): 2104561.
[43]
Hou H L, Zeng X K, Zhang X W. Angew. Chem. Int. Ed., 2020, 59(40): 17356.

doi: 10.1002/anie.v59.40     URL    
[44]
Chen Z, Yao D C, Chu C C, Mao S. Chem. Eng. J., 2023, 451: 138489.

doi: 10.1016/j.cej.2022.138489     URL    
[45]
Hargreaves J S J, Chung Y M, Ahn W S, Hisatomi T, Domen K, Kung M C, Kung H H. Appl. Catal. A: Gen., 2020, 594: 117419.

doi: 10.1016/j.apcata.2020.117419     URL    
[46]
Hargreaves J S J, Chung Y M, Ahn W S, Hisatomi T, Domen K, Kung M C, Kung H H. Appl. Catal. A: Gen., 2020, 594: 117419.

doi: 10.1016/j.apcata.2020.117419     URL    
[47]
Ketchie W C, Murayama M, Davis R J. Top. Catal., 2007, 44(1): 307.

doi: 10.1007/s11244-007-0304-x     URL    
[48]
Kung M C, Kung H H. Chin. J. Catal., 2019, 40(11): 1673.

doi: 10.1016/S1872-2067(19)63327-9     URL    
[49]
Lin Y J, Khan I, Saha S, Wu C C, Barman S R, Kao F C, Lin Z H. Nat. Commun., 2021, 12: 180.

doi: 10.1038/s41467-020-20445-0    
[50]
Wang K F, Shao D K, Zhang L, Zhou Y Y, Wang H P, Wang W Z. J. Mater. Chem. A, 2019, 7(35): 20383.

doi: 10.1039/C9TA06251C     URL    
[51]
Hong K S, Xu H F, Konishi H, Li X C. J. Phys. Chem. C, 2012, 116(24): 13045.

doi: 10.1021/jp211455z     URL    
[52]
Yang H Y, Wu J, Chen Z R, Zou K, Liang R H, Kang Z H, Menezes P W, Chen Z L. Energy Environ. Sci., 2023, 16(1): 210.

doi: 10.1039/D2EE02554J     URL    
[53]
Wang K, Zhang M Q, Li D G, Liu L H, Shao Z P, Li X Y, Arandiyan H, Liu S M. Nano Energy, 2022, 98: 107251.

doi: 10.1016/j.nanoen.2022.107251     URL    
[54]
Wang C Y, Chen F, Hu C, Ma T Y, Zhang Y H, Huang H W. Chem. Eng. J., 2022, 431: 133930.

doi: 10.1016/j.cej.2021.133930     URL    
[55]
Zhou X F, Yan F, Lyubartsev A, Shen B, Zhai J W, Conesa J C, Hedin N. Adv. Sci., 2022, 9(18): 2105792.
[56]
Zhou X F, Shen B, Zhai J W, Conesa J C. Small Meth., 2021, 5(6): 2100269.
[57]
Ma Y L, Wang B, Zhong Y Z, Gao Z Y, Song H L, Zeng Y J, Wang X Y, Huang F, Li M R, Wang M Y. Chem. Eng. J., 2022, 446: 136958.

doi: 10.1016/j.cej.2022.136958     URL    
[58]
Yan W, Sun J X, Hu T, Tian S H, Feng J X, Xiong Y. Appl. Catal. B Environ., 2023, 323: 122143.

doi: 10.1016/j.apcatb.2022.122143     URL    
[59]
Wang L C, Chen Z S, Zhang Y H, Liu C, Yuan J P, Liu Y L, Ge W Y, Lin S, An Q, Feng Z G. Chem., 2022, 17(15): e202200278.
[60]
Xi W H, Lan Y, Shen J, Han W, Cheng C. J. Anhui Univ. Nat. Sci. Ed., 2022, 46(3): 3.
奚文灏, 兰彦, 沈洁, 韩伟, 程诚. 安徽大学学报(自然科学版), 2022, 46(3): 3.)
[61]
Burlica R, Shih K Y, Locke B R. Ind. Eng. Chem. Res., 2010, 49(14): 6342.

doi: 10.1021/ie100038g     URL    
[62]
Ranieri P, McGovern G, Tse H, Fulmer A, Kovalenko M, Nirenberg G, Miller V, Rabinovich A, Fridman A, Fridman G. IEEE Trans. Plasma Sci., 2019, 47(1): 395.

doi: 10.1109/TPS.2018.2878971     URL    
[63]
Takeuchi N, Ishibashi N. Plasma Sources Sci. Technol., 2018, 27(4): 045010.

doi: 10.1088/1361-6595/aabd17     URL    
[64]
Wang H H, Wandell R J, Tachibana K, Voráč J, Locke B R. J. Phys. D: Appl. Phys., 2019, 52(7): 075201.

doi: 10.1088/1361-6463/aaf132     URL    
[65]
Shang K F, Li J, Wang X J, Yao D, Lu N, Jiang N, Wu Y. Jpn. J. Appl. Phys., 2016, 55(1S): 01AB02.
[66]
Tachibana K, Nakamura T. Jpn. J. Appl. Phys., 2019, 58(4): 046001.

doi: 10.7567/1347-4065/aafe73     URL    
[67]
Cameli F, Dimitrakellis P, Chen T Y, Vlachos D G. ACS Sustainable Chem. Eng., 2022, 10(5): 1829.

doi: 10.1021/acssuschemeng.1c06973     URL    
[68]
Chen B L, Xia Y, He R X, Sang H Q, Zhang W C, Li J, Chen L F, Wang P, Guo S S, Yin Y G, Hu L G, Song M Y, Liang Y, Wang Y W, Jiang G B, Zare R N. Proc. Natl. Acad. Sci. U. S. A., 2022, 119(32): e2209056119.
[69]
Ben-Amotz D. Science, 2022, 376(6595): 800.

doi: 10.1126/science.abo3398     URL    
[70]
Kathmann S M, Kuo I F W, Mundy C J. J. Am. Chem. Soc., 2008, 130(49): 16556.

doi: 10.1021/ja802851w     URL    
[71]
Wei H R, Vejerano E P, Leng W N, Huang Q S, Willner M R, Marr L C, Vikesland P J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(28): 7272.

doi: 10.1073/pnas.1720488115     URL    
[72]
Lee J K, Walker K L, Han H S, Kang J, Prinz F B, Waymouth R M, Nam H G, Zare R N. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(39): 19294.

doi: 10.1073/pnas.1911883116     URL    
[73]
Zhu C Q, Francisco J S. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(39): 19222.

doi: 10.1073/pnas.1913311116     URL    
[74]
Cao T T, Tong W S, Feng F, Zhang S T, Li Y N, Liang S J, Wang X, Chen Z S, Zhang Y H. Chem. Eng. J., 2022, 431: 134005.

doi: 10.1016/j.cej.2021.134005     URL    
[1] 陈安淇, 蒋智威, 唐俊涛, 喻桂朋. 共价有机框架材料用于光催化产过氧化氢[J]. 化学进展, 2024, 36(3): 357-366.
[2] 李怡宁, 隋铭皓. 基于过氧乙酸的高级氧化技术及在水处理消毒中的应用[J]. 化学进展, 2023, 35(8): 1258-1265.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[5] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[6] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999.
[7] 于洪涛, 陈硕, 全燮*, 张振华. 光催化水处理消毒的原理、材料和反应器[J]. 化学进展, 2017, 29(9): 1030-1041.
[8] 王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(08): 1246-1259.
[9] 张国富, 温馨, 王涌, 莫卫民, 丁成荣. 氧化脱肟研究新进展[J]. 化学进展, 2012, 24(0203): 361-369.
[10] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.
[11] 韩广业 李淑芹 匡廷云. 光合放氧复合物锰簇光组装*[J]. 化学进展, 2010, 22(08): 1556-1565.
[12] 李凤英,刘晔,王霞,贺小双,丁侠. 金属卟啉催化的过氧化氢选择氧化烃类反应机理研究[J]. 化学进展, 2008, 20(11): 1635-1641.
[13] 郎贤军,路瑞玲,李臻,夏春谷. 多金属氧酸盐催化的液相氧化反应*[J]. 化学进展, 2008, 20(04): 469-482.
[14] 张雄福. 苯直接一步氧化合成苯酚*[J]. 化学进展, 2008, 20(0203): 386-395.
[15] 陈杨英,韩秀文. 过氧化氢为氧源催化烯烃环氧化研究[J]. 化学进展, 2006, 18(04): 399-409.