English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1030-1041 DOI: 10.7536/PC170734 前一篇   后一篇

• 综述 •

光催化水处理消毒的原理、材料和反应器

于洪涛, 陈硕, 全燮*, 张振华   

  1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 大连 116024
  • 收稿日期:2017-07-19 修回日期:2017-08-09 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 全燮,e-mail:quanxie@dlut.edu.cn E-mail:quanxie@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21377020)资助

The Mechanism, Materials and Reactors of Photocatalytic Disinfection in Water and Wastewater Treatment

Hongtao Yu, Shuo Chen, Xie Quan*, Zhenhua Zhang   

  1. Key Laboratory of Industrial Ecology and Environmental Engineering(Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
  • Received:2017-07-19 Revised:2017-08-09 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377020).
传统的水处理消毒技术使用含氯消毒剂和臭氧等化学品,容易产生有毒的副产物。紫外线消毒技术不使用化学试剂且不产生副产物,因此得到广泛应用。但是紫外线仅破坏致病微生物的遗传物质,阻断其繁殖,一些致病微生物能够修复紫外损伤恢复活性。光催化过程产生的羟基自由基不但能氧化分解DNA,还能破坏细胞膜并氧化流出的胞内物质,进而能彻底杀死微生物。由于紫外光和自由基同时参与灭菌,灭活速度也比紫外消毒快,因此具有较好的应用前景。本文综述了光催化产生的各种氧化性自由基的消毒原理,介绍了光催化剂分别与金属颗粒、纳米碳材料和微生物适配子构成的复合光催化消毒材料,在此基础上总结了薄膜反应器、固定床反应器和膜分离反应器在光催化消毒领域的研究进展。
Traditional disinfection technologies not only consume corrosive agents (such as Cl2 and O3) but also generate toxic disinfection by-products. Without these drawbacks, ultraviolet disinfection technology has been used widely in water and wastewater treatment. However, some pathogenic bacteria can repair their ultraviolet damage and reactivate, which brings health risk. Photocatalytic disinfection is a safe alternative, since photogenerated reactive oxygen species are confirmed to destroy not only DNA but also plasma membrane and effluent protein, then killing pathogenic bacteria utterly. Furthermore, both UV and photogenerated reactive oxygen species participate in the sterilization process and increase the rate of disinfection. Therefore, compared to ultraviolet disinfection, photocatalysis displays a superior ability to kill microorganisms fastly and thoroughly. This paper presents the advantages of photocatalysis over other disinfection technologies including chlorine-containing disinfectant, ozone and ultraviolet. Special attention is paid to the disinfection mechanisms of various photogenerated oxidative radicals. Typical photocatalytic composites including semiconductor-carbon with membrane stress, semiconductor-metal with oxidative stress and semiconductor-DNA aptamer with ability to capture microbial cell are summarized. Furthermore, three kinds of possible application modes of photocatalytic disinfection, including annular reactors, fixed bed reactors and membrane separation reactors, are reviewed. Finally, research prospects are proposed for the future development of photocatalysis in disinfection.
Contents
1 Introduction
2 Disinfection mechanism on photogenerated reactive oxygen species
2.1 Hydroxyl radical
2.2 Singlet oxygen
2.3 Hydrogen peroxide
2.4 Halogenic radical
3 Pathogenic microorganisms
3.1 Common bacteria
3.2 Viruses
3.3 Protozoa
3.4 Antibiotic resistant bacteria and antibiotic resistance genes
4 Photocatalytic materials for disinfection
4.1 TiO2
4.2 Non-TiO2-based photocatalysts
4.3 Composite of photocatalyst and nano carbon material with membrane stress
4.4 Composite of photocatalyst and nano metal materials with oxidative stress
4.5 Composite of photocatalyst and DNA aptamer
5 Reactors for photocatalytic disinfection
5.1 Annular reactors
5.2 Fixed bed reactors
5.3 Membrane separation reactors
6 Conclusion

中图分类号: 

()
[1] 梁好(Liang H), 盛选军(Sheng X J), 刘传胜(Liu C S). 饮用水安全保障技术(Drinking Water Safety and Security Technology). 北京:化学工业出版社(Beijing:Chemical Industry Press). 2007.
[2] Masschelein W J著, 张彭义(Zhang P Y)译. 紫外光在水和废水处理中的应用(Uitraviolet Light in Water and Wastewater Sanitation). 北京:机械工业出版社(Beijing:China Machine Press). 2014.
[3] Taylor-Edmonds L, Lichi T, Rotstein-Mayer A, Mamane H. J. Environ. Sci. Heal. A, 2015, 50:341.
[4] 美国国家水研究中心(NWRI)编著, 深圳海川环境科技有限公司(Shenzhen Haichuan Environmental Technology Co. Ltd.)译, 饮用水与再生水紫外线消毒指南(Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse). 北京:化学工业出版社(Beijing:Chemical Industry Press). 2008.
[5] Pichat P. Photocatalysis and Water Purification. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co.KGaA, 2013.
[6] Stefanakos E, Trotz M A, Yogi Goswami D. Appl. Catal. B:Environ., 2010, 98:27.
[7] Cronan J E, Gelmann E P. J. Biol. Chem., 1973, 248(4):1188.
[8] Kim S, Ghafoor K, Lee J, Feng M, Hong J, Lee D U, Park J. Water Res., 2013, 47(13):4403.
[9] Rengifo-Herrera J A, Pierzcha K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C. Appl. Catal. B:Environ., 2009, 88:398.
[10] Cho M, Lee J, Mackeyev Y, Wilson L J, Alvarez P J J, Hughes J B, Kim J. Environ. Sci. Technol., 2010, 44(17):6685.
[11] Ogilby P R. Chem. Soc. Rev., 2010, 39:3181.
[12] Planas O, Macia N, Agut M, Nonell S, Heyne B. J. Am. Chem. Soc., 2016, 138:2762.
[13] Linley E, Denyer S P, McDonnel G, Simons C, Maillard J. J. Antimicrob. Chemoth., 2012, 67:1589.
[14] Yan G, Chen J, Hu Z. J. Photochem. Photobiol. A:Chem., 2009, 207:153.
[15] Li G, Liu X, Zhang H, An T, Zhang S, Carroll A R, Zhao H. J. Catal., 2011, 277:88.
[16] McCullagh C, Robertson J M C, Bahnemann D W, Robertson P K J. Res. Chem. Intermed., 2007, 33:359.
[17] Paleologou A, Marakas H, Xekoukoulotakis N P, Moya A, Vergara Y, Kalogerakis N, Gikas P, Mantzavinos D. Catal. Today, 2007, 129:136.
[18] Backhaus K, Marugan J, Grieken R V, Sordo C. Water Sci. Technol., 2010, 61:2355.
[19] Agulló-Barceló M, Polo-López M I, Lucena F, Jofre J, Fernández-Ibáñez P. Appl. Catal. B:Environ., 2013, 136/137:341.
[20] Polo-López M I, Fernández-Ibáñez P, García-Fernández I, Oller I, Salgado-Tránsitob I, Sichel C. J. Chem. Technol. Biotechnol., 2010, 85:1038.
[21] Silvia M. Zacarías, María L. Satuf, María C. Vaccari, Orlando M. Alfano. Chem. Eng. J., 2015, 266:133.
[22] 周群英(Zhou Q Y),王士芬(Wang S F). 环境工程微生物学(第三版)(Environmental Engineering Microbiology (Third Edition)). 北京:高等教育出版社(Beijing:China Higher Education Press), 2008.
[23] McMinn B R, Ashbolt N J, Korajkic A. Lett. Appl. Microbiol., 2017, doi:10.1111/lam.12736.
[24] García-Aljaro C, Martín-Díaz J, Vinas-Balada E, Calero-Caceres W, Lucena F, Blanch A R. Water Res., 2017, 112:248.
[25] Wu J, Cao Y, Young B, Yuen Y, Jiang S, Melendez D, Griffith J F, Stewart J R. Environ. Sci. Technol., 2016, 50:11593.
[26] Lee S, Ihara M, Yamashita N, Tanaka H. Water Res., 2017, 114:23.
[27] Shirasaki N, Matsushita T, Matsui Y. Water Sci. Technol. Water Supply, 2012, 12(5):666.
[28] Baert L, Uyttendaele M, Van Coillie E, Debevere J. Food Microbiol., 2008, 25:871.
[29] Mattle M J, Kohn T. Environ. Sci. Technol., 2012, 46(18):10022.
[30] Abeledo-Lameiro M J, Ares-Mazás E, Gómez-Couso H. J. Photochem. Photobiol. B, 2016, 163:92.
[31] Baque R H, Gilliam A O, Robles L D, Jakubowski W, Slifko T R. Water Res., 2011, 45(10):3175.
[32] Ferro G, Guarino F, Cicatelli A, Rizzo L. J. Hazard. Mater., 2017, 323:426.
[33] Dunlop P S M, Ciavola M, Rizzo L, McDowell D A, Byrnea J A. Catal. Today, 2015, 240:55.
[34] Janpetch N, Vanichvattanadecha C, Rujiravanit R. Cellulose, 2015, 22:3321.
[35] Wang W, Li G, Xia D, An T, Zhao H, Wong P K. Environ. Sci.:Nano, 2017, 4:782.
[36] Soni S S, Dave G S, Henderson M J, Gibaud A. Thin Solid Films, 2013, 531:559.
[37] Keane D A, McGuigan K G, Fernández Ibáñez P, Inmaculada Polo-López M, Anthony Byrne J, Dunlop P S M, Dionysiou D D, Pillai S C. Catal. Sci. Technol., 2014, 4:1211.
[38] Liu L, Yang W, Li Q, Gao S, Shang J. ACS Appl. Mater. Interfaces, 2014, 6:5629.
[39] Makwana N M, Hazael R, McMillan P F, Darr J A. Photochem. Photobiol. Sci., 2015, 14, 1190.
[40] Sharma R, Uma, Singh S, Verma A, Khanuja M. Journal of Photochemistry & Photobiology, B:Biology, 2016, 162:266.
[41] Wu D, Ye L, Yue S, Wang B, Wang W, Yip H Y, Wong P K. J. Phys. Chem. C, 2016, 120, 7715.
[42] Li Y, Zhang C, Shuai D, Naraginti S, Wang D, Zhang W. Water Res., 2016, 106:249.
[43] Huang J, Ho W, Wang X. Chem. Commun., 2014, 50(33):4338.
[44] Zhao H, Yu H, Quan X, Chen S, Zhang Y, Zhao H, Wang H. Appl. Catal. B:Environ., 2014, 152/153:46.
[45] Latiff N M, Teo W Z, Sofer Z, Fisher A C, Pumera M. Chem. Eur. J., 2015, 21:13991.
[46] Xia D, Shen Z, Huang G, Wang W, Yu J C, Wong P K. Environ. Sci. Technol., 2015, 49:6264.
[47] Chandran P, Kumari P, Sudheer Khan S. Solar Energy, 2014, 105:542.
[48] Yu H T, Quan X, Zhang Y, Ma N, Chen S, Zhao H M. Langmuir, 2008, 24(14):7599.
[49] Liu C, Kong D, Hsu P, Yuan H, Lee H, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini P A, Parker K M, Boehm A B, Cui Y. Nat. Nanotechnol., 2016, 11(12):1098.
[50] Vecitis C D, Zodrow K R, Kang S, Elimelech M. ACS Nano, 2010, 4:5471.
[51] Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. ACS Nano, 2010, 4:4317.
[52] Akhavan O, Ghaderi E. ACS Nano, 2010, 4:5731.
[53] Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R. Nat. Nanotechnol., 2013, 8:594.
[54] Lyon D Y, Alvarez P J J. Environ. Sci. Technol., 2008, 42:8127.
[55] Akhavan O, Ghaderi E, Esfandiar A. J. Phys. Chem. B, 2011, 115:6279.
[56] Akhavan O, Ghaderi E. Carbon, 2012, 50:1853.
[57] Cruz-Ortiz B R, Hamilton J W J, Pablos C, Díaz-Jiménez L, Cortés-Hernández D A, Sharma P K, Castro-Alférez M, Fernández-Ibañez P, Dunlop P S M, Byrne J A. Chem. Eng. J., 2017, 316:179.
[58] Oza G, Pandey S, Gupta A, Shinde S, Mewada A, Jagadale P, Sharon M, Sharon M. Mater. Sci. Eng. C:Mater., 2013, 33:4392.
[59] Ouyang K, Dai K, Chen H, Huang Q, Gao C, Cai P. Ecotox. Environ. Safe., 2017, 136:40.
[60] Zeng X, Wang Z, Meng N, McCarthy D T, Deletic A, Pan J, Zhang X. Appl. Catal. B:Environ., 2017, 202:33.
[61] Ko Y C, Fang H Y, Chen D H. J. Alloys Compd., 2017, 695:1145.
[62] Pan W Y, Huang C C, Lin T T, Hu H Y, Lin W C, Li M J, Sung H W. Nanomed.:Nanotechnol., 2016, 12:431.
[63] Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J. Water Res., 2008. 42(18):4591.
[64] Huang K, Shieh D, Yeh C, Wu P, Cheng F. Curr. Med. Chem., 2014, 21:3312.
[65] Loo S, Krantz W B, Fane A G, Gao Y, Lim T, Hu X. Environ. Sci. Technol., 2015, 49:2310.
[66] Jung W K, Koo H C, Kim K W, Shin S, Kim S H, Park Y H. Appl. Environ. Microbiol., 2008, 74:2171.
[67] Sharma V K, Siskova K M, Zboril R, Gardea-Torresdey J L. Adv. Colloid Interface, 2014, 204:15.
[68] Dallas P, Sharma V K, Zboril R. Adv. Colloid Interface, 2011, 166:119.
[69] Liga M V, Bryant E L, Colvin V L, Li Q. Water Res., 2011, 45:535.
[70] Huang C K, Wu T, Huang C W, Lai C Y, Wu M Y, Lin Y W. Appl. Surf. Sci., 2017, 399:10.
[71] Hu X, Mu L, Zhou Q, Wen J, Pawliszyn J. Environ. Sci. Technol., 2011, 45:4890.
[72] Hu X, Mu L, Wen J, Zhou Q. Carbon, 2012, 50(8):2772.
[73] Song M Y, Jurng J, Park Y K, Kim B C. J. Hazard. Mater., 2016, 318:247.
[74] Zheng X, Wang Q, Chen L, Wang J, Cheng R. Chem. Eng. J., 2015, 277:124.
[75] Guo C, Wang K, Hou S, Wan L, Lv J, Zhang Y, Qu X, Chen S, Xu J. J. Hazard. Mater., 2017, 323:710.
[76] Khataee A R, Fathinia M, Aber S. Ind. Eng. Chem. Res., 2010, 49:12358.
[77] Passalía C, Alfano O M, Brandi R J. Ind. Eng. Chem. Res., 2011, 50:9077.
[78] Yu H, Song L, Hao Y, Lu N, Quan X, Chen S, Zhang Y, Feng Y, Chem. Eng. J., 2016, 283:1506.
[79] Li D, Xiong K, Yang Z, Liu C, Feng X, Lu X. Catal. Today, 2011, 175:322.
[80] Mozia S, Bro Dz· ek P, Przepiórski J, Tryba B, Morawski A W. J. Nanomater., 2012, 949764.
[81] Monteagudo J M, Durǎn A, Martín I S, Acevedo A M. Chemosphere, 2017, 168:1447.
[82] Alrousan D M A, Polo-López M I, Dunlop P S M, Fernández-Ibáňez P, Byrne J A. Appl. Catal. B:Environ., 2012, 128:126.
[83] Satuf M L, Brandi R J, Cassano A E, Alfano O M. Appl. Catal. B:Environ., 2008, 82(1/2):37.
[84] Imoberdorf G E., Taghipour F, Keshmiri M, Mohseni M. Chem. Eng. Sci., 2008, 63:4228.
[85] Acosta-Herazo R, Monterroza-Romero J, Ángel Mueses M, Machuca-Martínez F, Li Puma G. Chem. Eng. J., 2016, 302:86.
[86] Walsem J V, Verbruggen S W, Modde B, Lenaerts S, Denys S. Chem. Eng. J., 2016, 304:808.
[87] Castedo A, Uriz I, Soler L, Gandía L M, Llorca J. Appl. Catal. B:Environ., 2017, doi:10.1016/j.apcatb. 2016.10.022.
[88] Misstear D B, Murtagh J P, Gill L W. J. Sol. Energ. T. Asme, 2013, 135:021012.
[89] Romero-Martínez L, Moreno-Andrés J, Acevedo-Merino A, Nebot E. J. Chem. Technol. Biotechnol., 2014, 89:1203.
[90] Ochiai T, Masuko K, Tago S, Nakano R, Nakata K, Hara M, Nojima Y, Suzuki T, Ikekita M, Morito Y, Fujishima A. Water, 2013, 5:1101.
[91] Pozzo R L, Brandi R J, Cassano A E, Baltanás M A. Chem. Eng. Sci., 2010, 65:1345.
[92] Shen C, Wang Y J, Xu J H, Luo G S. Chem. Eng. J., 2012, 209:478.
[93] D?ugosz M, imudzki P, Kwiecien A, Szczubia?ka K, Krzek J, Nowakowska M. J. Hazard. Mater., 2015, 298:146.
[94] Verma A, Dixit D, Toor A, Srivastava J. Environ. Prog. Sustnin., 2015, 34(2):380.
[95] Pronin N, Klauson D, Moiseev A, Deubener J, Krichevskaya M. Appl. Catal. B:Environ., 2015, 178:117.
[96] Dong S, Zhang X, He F, Dong S, Zhou D, Wang B. J. Chem. Technol. Biotechnol., 2015, 90:880.
[97] Sampaio M J, Silva C G, Silva A, Faria J L. J. Chem. Technol. Biotechnol., 2016, 91:346.
[98] Saien J, Asgari M, Soleymani A R, Taghavinia N. Chem. Eng. J., 2009, 151:295.
[99] Rezaei R, Mohseni M. Appl. Catal. B:Environ., 2017, 205:302.
[100] Dong S, Zhou D, Bi X. Water Sci. Technol., 2012, 65(6):977.
[101] Braham R J, Ha A T. Phys. Chem. Chem. Phys., 2013, 15:12373.
[102] Pablos C, Grieken R, Marugán J, Moreno B. Catal. Today, 2011, 161:133.
[103] Racyte J, Langenhoff A A M, Ribeiro A F M M R, Paulitsch-Fuchs A H, Bruning H, Rijnaarts H H M. Biotechnol. Bioeng., 2014, 111(10):2009.
[104] Marugán J, Grieken R, Pablos C, Lucila Satuf M, Cassano A E, Alfano O M. Catal. Today, 2015, 252:143.
[105] Coronado J M, Soria J, Conesa J C, Bellod R, Adán C, Yamaoka H, Loddo V, Augugliaro V. Top. Catal., 2005, 35(3/4):279.
[106] Sordo C, Grieken R V, Marugán J, Fernández-Ibáñ P. Water Sci. Technol., 2010, 61(2):507.
[107] Grieken R V, Marugán J, Sordo C, Pablos C. Catal. Today, 2009, 144:48.
[108] Nakajima A, Koizumi S, Watanabe T, Hashimoto K. Langmuir, 2000, 16(17):7048.
[109] Papadopoulou E L, Barberoglou M, Zorba V, Manousaki A, Pagkozidis A, Stratakis E, Fotakis C. J. Phys. Chem. C, 2009, 113(7):2891.
[110] Ma N, Quan X, Zhang Y, Chen S, Zhao H. J. Membrane Sci., 2009, 335(1):58.
[111] Athanasiou D A, Romanos G E, Falaras P. Chem. Eng. J., 2016, 305:92.
[112] Choi H, Sofranko A C, Dionysiou D D. Adv. Funct. Mater., 2006, 16:1067.
[113] Zhang H, Quan X, Chen S, Zhao H, Zhao Y. Appl. Surf. Sci., 2006, 252:8598.
[114] Guo B, Pasco E V, Xagoraraki I, Tarabara V V. Sep. Purif. Technol., 2015, 149:245.
[115] Damodar R A, You S J, Chou H H. J. Hazard. Mater., 2009, 172:1321.
[116] Liu L, Liu Z, Bai H, Sun D D. Water Res., 2012, 46:1101.
[117] Ma N, Fan X, Quan X, Zhang Y. J. Membrane Sci., 2009, 336(1/2):109.
[118] Zhao H, Chen S, Quan X, Yu H, Zhao H. Appl. Catal. B:Environ., 2016, 194:134.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[9] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[15] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.