English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 357-366 DOI: 10.7536/PC230724 前一篇   后一篇

• 综述 •

共价有机框架材料用于光催化产过氧化氢

陈安淇, 蒋智威, 唐俊涛*(), 喻桂朋*   

  1. 中南大学化学化工学院 长沙 410083
  • 收稿日期:2023-07-26 修回日期:2023-08-28 出版日期:2024-03-24 发布日期:2023-09-20
  • 基金资助:
    湖南省杰出青年基金项目(2022JJ10080); 湖南省科技计划项目(2021GK2014); 国家自然科学基金(52173212); 国家自然科学基金(52103275); 湖南省自然科学基金(2021JJ30795)

Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials

Anqi Chen, Zhiwei Jiang, Juntao Tang(), Guipeng Yu   

  1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2023-07-26 Revised:2023-08-28 Online:2024-03-24 Published:2023-09-20
  • Contact: * e-mail: gilbertyu@csu.edu.cn
  • About author:
    † These authors contributed equally to this work.
  • Supported by:
    Hunan province Funds for Distinguished Young Scientists(2022JJ10080); Hunan Provincial Science and Technology Plan Project, China(2021GK2014); National Natural Science Foundation of China(52173212); National Natural Science Foundation of China(52103275); Hunan Provincial Natural Science Foundation(2021JJ30795)

过氧化氢(H2O2)是一种重要的绿色氧化剂,然而其主流生产方法蒽醌法具有耗能高、安全隐患大等缺点。以水和氧气为原料,通过人工光合作用合成H2O2具有安全、环保和节能等特点,已成为当前研究热点。共价有机框架(COFs)因其结构可调性、高比表面积、良好光催化性能等优点被广泛应用于光催化生产H2O2中。本文归纳了近年来COFs光催化产H2O2领域研究进展,分别论述了通过氧还原、水氧化以及双通道过程产生H2O2的反应机理。综述了通过结构设计、官能团修饰等调控COFs光学带隙、提升电荷分离能力和载流子迁移率,从而提高光催化产H2O2性能的方法,有助于设计出高效、稳定、可持续生产的COFs应用于光催化产H2O2

Hydrogen peroxide (H2O2) is an important green oxidizing agent, but the main anthraquinone process for production thereof suffers high energy consumption and large safety risks. Artificial photosynthesis H2O2 from water and oxygen features safe, environmentally friendly and energy-saving characteristics and has gradually become a research focus. Covalent organic frameworks (COFs) have been widely used in the photocatalytic production of H2O2 for their high specific surface area, good photocatalytic performance and structural tunability. This review summarizes the recent research progress in the field of COFs photocatalytic production of H2O2, discussing the reaction mechanisms for the production of H2O2 through oxygen reduction, water oxidation, and dual-channel processes. It introduces methods to improve the photocatalytic production of H2O2 by regulating the optical bandgap, enhancing charge separation capability, and improving carrier mobility of COFs through structural design and functional group modification. These methods contribute to the design of efficient, stable, and sustainable COFs for photocatalytic production of H2O2.

Contents

1 Introduction

2 Hydrogen peroxide production by ORR pathway

2.1 Direct one-step two-electron oxygen reduction mechanism

2.2 Indirect two-step single-electron oxygen reduction mechanism

3 Hydrogen peroxide production by WOR pathway

4 Dual-channel path production of hydrogen peroxide

5 Conclusion and outlook

()
图1 光催化剂产H2O2的能带结构示意图
Fig. 1 Schematic diagram of band structure of H2O2 production by photocatalyst
图2 两电子氧还原光催化产过氧化氢示意图
Fig. 2 Schematic diagram of photocatalytic production of hydrogen peroxide by two-electron oxygen reduction
图3 (a) TAPD-(Me)2和TAPD-(OMe)2 COF的合成路线示意图[31]; (b)光催化产H2O2的机理示意图[31]; (c) C-COFs、S-COFs和FS-COFs的合成示意图[32]; (d) C-COFs和FS-COFs氧还原为H2O2的自由能图及FS-COFs生产H2O2的可能步骤[32]
Fig. 3 Schematic diagram of the synthesis route of (a) TAPD-(Me)2 and TAPD-(OMe)2 COF[31]; (b) Schematic diagram of the mechanism of photocatalytic hydrogen peroxide production[31]; (c) Synthesis diagram of C-COFS, S-COFs and FS-COFs[32]; (d) Free energy diagram of reduction of O2 via C-COFs and FS-COFs to H2O2 and possible steps of H2O2 production by FS-COFs[32]
图4 (a) CoPc-BTM-COF和CoPc-DAB - COF的合成路径示意图;(b)电子顺磁共振光谱;(c) CoPc-BTM-COF中Co原子和N原子的氧吸附能计算;(d) CoPc-BTM-COF光催化体系的原位红外光谱;(e) CoPc上的2e-(橙色)和4e-(青色)ORR过程的自由能图[33]
Fig. 4 (a) Schematic diagram of synthesis paths of CoPc-BTM-COF and COPc-DAB-COF; (b) EPR spectrum; (c) Calculated oxygen adsorption energy of Co atom and N atom in CoPc-BTM-COF; (d) FT-IR spectra of COPc-BTM-COF photocatalytic systems in situ (e) Free energy diagrams of 2e-(orange) and 4e-(cyan)ORR processes on CoPc[33]
图5 (a) Bpy-TAPT的合成路线示意图;(b) 三种COFs光催化生产H2O2的研究;(c) Bpy-TAPT和Bpy-TAPB的电子顺磁共振光谱;(d) Bpy-TAPT光催化产H2O2机理[34]
Fig. 5 (a) Schematic diagram of the composite route of Bpy-TAPT; (b) Photocatalytic production of H2O2 by three COFs; (c) EPR spectra of Bpy-TAPT and Bpy-TAPB; (d) Mechanism of H2O2 production by Bpy-TAPT photocatalysis[34]
图6 (a)COF合成示意图;(b)DETH-COF水氧化反应自由能变化;(c)反应机理示意图[41]
Fig. 6 (a) Synthesis diagram of COF;(b) the free energy change of water oxidation reaction on DETH-COF;(c) Schematic diagram of the reaction mechanism[41]
图7 COF通过双通道光催化产H2O2示意图
Fig. 7 Schematic diagram of COF photocatalytic production of H2O2 through dual channels
图8 (a)CTFs的化学结构[42];(b)氧气吸附吉布斯自由能变图[42];(c)直接两电子水氧化反应路径合成过氧化氢的吉布斯自由能变化图[42];(d)CHFs的化学结构[43];(e)HEP-TAPT-COF和HEP-TAPB-COF合成示意图[45]
Fig. 8 (a) The chemical structure of CTFs[42]; (b) Oxygen adsorption Gibbs free energy variable map[42]; (c) Direct two-electron water oxidation reaction path synthesis of hydrogen peroxide Gibbs free energy variation[42]; (d) The chemical structure of CHFs[43]; (e) Synthesis diagram of HEP-TAPT-COF and HEP-TAPB-COF[45]
图9 (a)联吡啶活性位点合成COF-TfpBpy的示意图;(b)g-C3N4结构示意图(c)和(d)光催化产H2O2过程中的位于900~1650 cm?1和3000~3500 cm?1处的原位红外[46];(e)光催化产H2O2过程中的位于900~1650 cm?1处的原位红外[46];(f)TTF-BT-COF的结构[47];(g)TD-COF和TT-COF的化学结构[48]
Fig. 9 (a) Schematic diagram of the synthesis of COF-TfpByy from the active site of bipyridine (b) g-C3N4 structure (c) and (d) in situ infrared at 900~1650 cm?1 and 3000~3500 cm?1 during photocatalytic production of H2O2 (e) in situ infrared at 900~1650 cm?1 during photocatalytic production of H2O2[46]; (f) The chemical structure of TTF-BT-COF[47]; (g)The chemical structures of TD-COF and TT-COF [48]
图10 (a)基于多组分策略的TDB-COF制备及光催化示意图;(b)WOR路径吉布斯自由能变化;(c)ORR路径吉布斯自由能变化[50]
Fig. 10 (a) Preparation of TDB-COF based on multi- component strategy and photocatalysis schematic diagram; (b) WOR path Gibbs free energy change and (c) ORR path Gibbs free energy change[50]
表1 COFs材料通过ORR路径应用于光催化产过氧化氢
Table 1 COFs materials are applied to photocatalytic hydrogen peroxide production via ORR path
Photocatalyst Reaction condition Solution condition H2O2 generation rate ref
CTF-NS-5BT λ>420 nm Water:BA (9∶1) 1630 μmol·h-1·gcat-1 13
TPB-DMTP-COF λ > 420 nm Pure water 2882 μmol·h-1·gcat -1 14
TpMa/CN-5 λ>420 nm Isopropanol+water 880.46 μmol 15
COF-TTA-TTTA λ~420 nm H2O∶EtOH=9∶1 4347 μmol·h-1·gcat-1 16
TiCOF-spn \ \ 489.94 μmol·h-1·gcat-1 17
EBA-COF λ=420 nm H2O∶benzyl alcohol=9∶1 2550 μmol·h-1·gcat-1 18
Bpt-CTF λ=350~780 nm H2O 32.681 μmol/h 19
N0-COF λ=495 nm \ 15.7 μmol/h 20
1H-COF \ \ 18.3 μmol/h 21
TpDz λ>420 nm H2O 7327 umol h-1 gcat-1 22
DMCR-1NH λ = 420~700 nm Water∶IPA (10∶1) 2588 μmol·h-1·gcat-1 23
Py-Da-COF λ >420 nm H2O∶BA = 9∶1 1242 μmol·h-1·gcat-1 24
4PE-N-S λ > 420 nm Real seawater∶EtOH= 9∶1 2556 μmol·h-1·gcat-1 25
PMCR-1 λ= 420~700 nm Water∶BA (10∶1) 129 028 μmol/g (60 h) 26
COF-TpHt λ>420 nm H2O∶BnOH=9∶1 11 986 μmol·h-1·gcat-1 28
TpAQ-COF-12 λ > 420 nm pure water 420 μmol·h-1·gcat-1 29
TAPD-(Me)2-COF λ=420~700nm H2O∶EtOH=1∶9 234.52 μmol·h-1·gcat-1 31
FS-COFs λ > 420 nm H2O 3904 μmol·h-1·gcat-1 32
CoPc-BTM-COF λ>400 nm H2O∶EtOH=9∶1 2096 μmol·h-1·gcat-1 33
Bpy-TAPT λ>420 nm H2O 4038 μmol·h-1·gcat-1 34
COF-TAPB-BPDA λ > 420 nm H2O∶BA (4∶1) 1240 μmol·h-1·gcat-1 35
TZ-COF \ H2O∶Benzyl alcohol (1∶1) 4951 μmol·h-1·gcat-1 36
SonoCOF-F2 λ>420 nm \ 197 μmol(24 h) 37
TF50-COF λ>400 nm H2O∶EtOH=9∶1 1739 μmol·h-1·gcat-1 38
CN-COF λ>400 nm H2O∶EtOH (9∶1) 2623 μmol·h-1·gcat-1 39
TAPB-PDA-OH λ=420 nm H2O∶EtOH=9∶1 2117.6 μmol·h-1·gcat-1 40
表2 COFs材料通过WOR和双通道路径应用于光催化产过氧化氢
Table 2 COFs materials used for photocatalytic hydrogen peroxide production via WOR and dual-channel pathways
[1]
Chen Z, Yao D C, Chu C C, Mao S. Chem. Eng. J., 2023, 451: 138489.

doi: 10.1016/j.cej.2022.138489     URL    
[2]
Fu Y J, Liu C A, Zhang M l, Zhu C, Li H, Wang H B, Song Y X, Huang H, Liu Y, Kang Z H. Adv. Energy Mater., 2018, 8: 1802525.

doi: 10.1002/aenm.v8.34     URL    
[3]
Liu Y, Zhao Y, Wang J L. J. Hazard. Mater., 2021, 404: 124191.

doi: 10.1016/j.jhazmat.2020.124191     URL    
[4]
Sang Y J, Cao F F, Li W, Zhang L, You Y W, Deng Q Q, Dong K, Ren J S, Qu X G. J. Am. Chem. Soc., 2020, 142(11): 5177.

doi: 10.1021/jacs.9b12873     URL    
[5]
Zhao C, Shi C J, Li Q, Wang X Y, Zeng G, Ye S, Jiang B J, Liu J. Mater. Today Energy, 2022, 24: 100926.
[6]
Melchionna M, Fornasiero P, Prato M. Adv. Mater., 2019, 31(13): 1802920.

doi: 10.1002/adma.v31.13     URL    
[7]
Song X. Master’s Dissertation of Yanshan University, 2020.
(宋鑫. 燕山大学硕士论文, 2020)
[8]
Wu M J. Master’s Dissertation of Beijing University of Chemical Technology, 2019.
(吴敏杰. 北京化工大学硕士论文, 2019)
[9]
Fukuzumi S, Lee Y M, Nam W. Chin. J. Catal., 2021, 42(8): 1241.
[10]
Li X L. Master's dissertation of Zhengzhou University, 2020.
(李新立. 郑州大学硕士论文, 2020 )
[11]
Yang X R, Deng M Y, Zhang X X, Applied Chemical Industry, 2023, 52 (5): 1508.
(杨晓茹, 邓明杨, 张晓昕. 应用化工, 2023, 52 (5): 1508.).
[12]
Zhang T, Zhang G, Chen L. Acc. Chem. Res., 2022, 55(6): 795.

doi: 10.1021/acs.accounts.1c00693     URL    
[13]
Yu X H, Viengkeo B, He Q, Zhao X, Huang Q L, Li P P, Huang W, Li Y G. Adv. Sustain. Syst., 2021, 5(10): 2100184.

doi: 10.1002/adsu.v5.10     URL    
[14]
Li L J, Xu L P, Hu Z F, Yu J C. Adv. Funct. Mater., 2021, 31: 2106120.

doi: 10.1002/adfm.v31.52     URL    
[15]
Wang H, Almatrafi E, Wang Z W, Yang Y, Xiong T, Yu H B, Qin H, Yang H L, He Y Z, Zhou C Y, Zeng G M, Xu P. J. Colloid Interface Sci., 2022, 608: 1051.

doi: 10.1016/j.jcis.2021.10.036     URL    
[16]
Tan F L, Zheng Y Y, Zhou Z P, Wang H L, Dong X, Yang J, Ou Z W, Qi H Y, Liu W, Zheng Z K, Chen X D. CCS Chem., 2022, 4(12): 3751.

doi: 10.31635/ccschem.022.202101578     URL    
[17]
Han W K, Lu H S, Fu J X, Liu X, Zhu X M, Yan X D, Zhang J W, Jiang Y Q, Dong H L, Gu Z G. Chem. Eng. J., 2022, 449: 137802.

doi: 10.1016/j.cej.2022.137802     URL    
[18]
Zhai L P, Xie Z P, Cui C X, Yang X B, Xu Q, Ke X T, Liu M H, Qu L B, Chen X, Mi L W. Chem. Mater., 2022, 34(11): 5232.

doi: 10.1021/acs.chemmater.2c00910     URL    
[19]
Wu C B, Teng Z Y, Yang C, Chen F S, Yang H B, Wang L, Xu H X, Liu B, Zheng G F, Han Q. Adv. Mater., 2022, 34: 2110266.

doi: 10.1002/adma.v34.28     URL    
[20]
Chai S M, Chen X W, Zhang X R, Fang Y X, Sprick R S, Chen X. Environ. Sci. Nano, 2022, 9(7): 2464.

doi: 10.1039/D2EN00135G     URL    
[21]
Hu H, Tao Y L, Wang D, Li C L, Jiang Q C, Shi Y X, Wang J, Qin J P, Zhou S J, Kong Y. J. Colloid Interface Sci., 2023, 629: 750.

doi: 10.1016/j.jcis.2022.09.111     URL    
[22]
Liao Q, Sun Q, Xu H, Wang Y, Xu Y, Li Z, Hu J, Wang D, Li H, Xi K. Angew. Chem. Int. Ed., 2023, e202310556.
[23]
Das P, Chakraborty G, Roeser J, Vogl S, Rabeah J, Thomas A. J. Am. Chem. Soc., 2023, 145(5): 2975.

doi: 10.1021/jacs.2c11454     URL    
[24]
Sun J M, Sekhar Jena H, Krishnaraj C, Singh Rawat K, Abednatanzi S, Chakraborty J, Laemont A, Liu W L, Chen H, Liu Y Y, Leus K, Vrielinck H, Van Speybroeck V, Van Der Voort P. Angew. Chem. Int. Ed., 2023, 62(19): 2216719.
[25]
Deng M J, Sun J M, Laemont A, Liu C H, Wang L Y, Bourda L, Chakraborty J, Van Hecke K, Morent R, De Geyter N, Leus K, Chen H, Van Der Voort P. Green Chem., 2023, 25(8): 3069.

doi: 10.1039/D2GC04459E     URL    
[26]
Das P, Roeser J, Thomas A. Angew. Chem. Int. Ed., 2023, 62(29): 2304349.
[27]
Yang S, Lu L L, Li J, Cheng Q Q, Mei B B, Li X W, Mao J N, Qiao P Z, Sun F F, Ma J Y, Xu Q, Jiang Z. SusMat, 2023, 3(3): 379.

doi: 10.1002/sus2.v3.3     URL    
[28]
Shao C C, He Q, Zhang M C, Jia L, Ji Y J, Hu Y P, Li Y Y, Huang W, Li Y G. Chin. J. Catal., 2023, 46: 28.
[29]
Zhang X C, Zhang J Z, Miao J, Wen X, Chen C, Zhou B X, Long M C. Chem. Eng. J., 2023, 466: 143085.

doi: 10.1016/j.cej.2023.143085     URL    
[30]
Trenker S, Grunenberg L, Banerjee T, Savasci G, Poller L M, Muggli K I M, Haase F, Ochsenfeld C, Lotsch B V. Chem. Sci., 2021, 12(45): 15143.

doi: 10.1039/D1SC04143F     URL    
[31]
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran C V, Borgmans S, Rogge S M J, Leus K, Stevens C V, Martens J A, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc., 2020, 142(47): 20107.

doi: 10.1021/jacs.0c09684     URL    
[32]
Luo Y, Zhang B P, Liu C C, Xia D H, Ou X W, Cai Y P, Zhou Y, Jiang J, Han B. Angew. Chem. Int. Ed., 2023, 62(26): 2305355.
[33]
Zhi Q J, Liu W P, Jiang R, Zhan X N, Jin Y C, Chen X, Yang X Y, Wang K, Cao W, Qi D D, Jiang J Z. J. Am. Chem. Soc., 2022, 144(46): 21328.

doi: 10.1021/jacs.2c09482     URL    
[34]
Liu Y, Han W K, Chi W W, Mao Y Q, Jiang Y Q, Yan X D, Gu Z G. Appl. Catal. B Environ., 2023, 331: 122691.

doi: 10.1016/j.apcatb.2023.122691     URL    
[35]
Yang T, Chen Y, Wang Y C, Peng X Q, Kong A G. ACS Appl. Mater. Interfaces, 2023, 15(6): 8066.

doi: 10.1021/acsami.2c20506     URL    
[36]
Mou Y, Wu X D, Qin C C, Chen J Y, Zhao Y L, Jiang L B, Zhang C, Yuan X Z, Huixiang Ang E, Wang H, Angew. Chem. Int. Ed., 2023, e202309480.
[37]
Zhao W, Yan P Y, Li B Y, Bahri M, Liu L J, Zhou X, Clowes R, Browning N D, Wu Y, Ward J W, Cooper A I. J. Am. Chem. Soc., 2022, 144(22): 9902.

doi: 10.1021/jacs.2c02666     URL    
[38]
Wang H Z, Yang C, Chen F S, Zheng G F, Han Q. Angew. Chem. Int. Ed., 2022, 61: e202202328.

doi: 10.1002/anie.v61.19     URL    
[39]
Di X, Lv X M, Wang H Z, Chen F S, Wang S Y, Zheng G F, Wang B, Han Q. Chem. Eng. J., 2023, 455: 140124.

doi: 10.1016/j.cej.2022.140124     URL    
[40]
Yang Y P, Kang J X, Li Y, Liang J J, Liang J X, Jiang L, Chen D M, He J, Chen Y J, Wang J Q. New J. Chem., 2022, 46(45): 21605.

doi: 10.1039/D2NJ03744K     URL    
[41]
Pan G D, Hou X S, Liu Z Y, Yang C K, Long J L, Huang G C, Bi J H, Yu Y, Li L Y. ACS Catal., 2022, 12(24): 14911.

doi: 10.1021/acscatal.2c03878     URL    
[42].
Chen L, Wang L, Wan Y Y, Zhang Y, Qi Z M, Wu X J, Xu H X. Adv. Mater., 2020, 32: 1904433.

doi: 10.1002/adma.v32.2     URL    
[43].
Cheng H, Lv H F, Cheng J, Wang L, Wu X J, Xu H X. Adv. Mater., 2022, 34: 2107480.

doi: 10.1002/adma.v34.7     URL    
[44]
Wan Y Y, Wang L, Xu H X, Wu X J, Yang J L. J. Am. Chem. Soc., 2020, 142(9): 4508.

doi: 10.1021/jacs.0c00564     URL    
[45]
Chen D, Chen W B, Wu Y T, Wang L, Wu X J, Xu H X, Chen L. Angew. Chem. Int. Ed., 2023, 62(9): 2217479.
[46]
Kou M P, Wang Y Y, Xu Y X, Ye L Q, Huang Y P, Jia B H, Li H, Ren J Q, Deng Y, Chen J H, Zhou Y, Lei K, Wang L, Liu W, Huang H W, Ma T Y. Angew. Chem. Int. Ed., 2022, 61(19): 2200413.
[47]
Chang J N, Li Q, Shi J W, Zhang M, Zhang L, Li S, Chen Y F, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2023, 62(9): 2218868.
[48]
Yue J Y, Song L P, Fan Y F, Pan Z X, Yang P, Ma Y, Xu Q, Tang B. Angew. Chem. Int. Ed., 2023, 62(38): 2309624.
[49]
Wu M M, Shan Z, Wang J J, Liu T T, Zhang G. Chem. Eng. J., 2023, 454: 140121.

doi: 10.1016/j.cej.2022.140121     URL    
[50]
Zhou Z M, Sun M H, Zhu Y B, Li P Z, Zhang Y R, Wang M K, Shen Y. Appl. Catal. B Environ., 2023, 334: 122862.

doi: 10.1016/j.apcatb.2023.122862     URL    
[1] 王晓宇, 王瑞义, 孔祥鹏, 牛宇岚, 郑占丰. 羟基化合物的催化转化研究:酚类与醇类化合物转化为醚与酯[J]. 化学进展, 2024, 36(3): 335-356.
[2] 周文博, 李晓曼, 罗民. 共价有机框架材料作为金属离子电池正极材料[J]. 化学进展, 2024, 36(3): 430-447.
[3] 李隆浩, 周伟, 谢亮, 杨潮伟, 孟晓晓, 高继慧. Fe-N-C氧还原电催化剂的失活机制及延寿策略[J]. 化学进展, 2024, 36(3): 376-392.
[4] 于敬泽, 谢腾峰. 以水为原料的过氧化氢原位制备方法[J]. 化学进展, 2024, 36(2): 177-186.
[5] 于江波, 于婧, 刘杰, 吴占超, 匡少平. 光催化去除水体中的抗生素[J]. 化学进展, 2024, 36(1): 95-105.
[6] 王子情, 杜金峰, 陆福泰, 邓启良. 四苯乙烯基共价有机框架的设计、合成及应用[J]. 化学进展, 2024, 36(1): 67-80.
[7] 张炜煜, 李杰, 李红, 姬佳奇, 宫琛亮, 丁三元. 共价有机框架材料在质子交换膜中的应用[J]. 化学进展, 2024, 36(1): 48-66.
[8] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[9] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[10] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[11] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[12] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[13] 孙寒雪, 王娟娟, 朱照琪, 李安. 燃料电池氧还原反应中的多孔有机聚合物衍生碳基电催化剂[J]. 化学进展, 2023, 35(11): 1638-1654.
[14] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[15] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.