English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 981-999 DOI: 10.7536/PC170552 前一篇   后一篇

• 综述 •

多相芬顿催化水处理技术与原理

吕来1,2,3, 胡春1,2,3*   

  1. 1. 广州大学环境科学与工程学院 珠江三角洲水质安全与保护教育部重点实验室 广州 510006;
    2. 中国科学院生态环境研究中心 中国科学院饮用水科学与技术重点实验室 北京 100085;
    3. 中国科学院大学 北京 100049
  • 收稿日期:2017-05-27 修回日期:2017-08-17 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 胡春,e-mail:huchun@gzhu.edu.cn E-mail:huchun@gzhu.edu.cn
  • 基金资助:
    国家自然科学基金重点基金项目(No.51538013)和国家重点研发计划(No.2016YFA0203200)资助

Heterogeneous Fenton Catalytic Water Treatment Technology and Mechanism

Lai Lyu1,2,3, Chun Hu1,2,3*   

  1. 1. Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China;
    2. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-05-27 Revised:2017-08-17 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51538013) and the National Key Research and Development Plan (No. 2016YFA0203200).
多相芬顿催化水处理技术是一种有效的降解水中有机污染物的方法。相比均相芬顿反应,它具有可循环利用、pH响应范围宽、不产生铁泥以及易于固液分离等优点。本文主要综述了经典芬顿反应机制、多相芬顿催化反应机制以及基于传统机理所发展起来的多相芬顿/类芬顿催化剂。总结了现存多相芬顿催化体系所存在的中性条件下活性低、催化剂稳定性差以及过氧化氢利用率低等瓶颈问题。重点介绍了针对这些问题所开发出的新型多相芬顿催化体系,包括单一铜反应中心催化体系和金属双反应中心催化体系。我们认为双反应中心催化体系实际上已经突破了经典芬顿反应概念,从电子分布极化理论出发,创造性地构建出具有电子高密度中心和低密度中心,实现了过氧化氢高效选择性还原和污染物高效氧化降解,解决了经典芬顿反应在实际水处理中的技术瓶颈问题。
Heterogeneous Fenton catalytic water treatment technology is an effective method for degradation of organic pollutants in water. Compared to the homogeneous Fenton reaction, it has the advantages of recyclability, wide pH response range, easy solid-liquid separation and non-production of iron sludge. This article mainly reviews the classical Fenton reaction mechanism, the heterogeneous Fenton reaction mechanism, and the developed heterogeneous Fenton/Fenton-like catalysts based on the basic mechanism. The bottleneck problems of the present heterogeneous Fenton system, including low activity under neutral condition, poor stability of the catalyst and low utilization efficiency of H2O2, are summarized. Particularly, the emphasis is to introduce the developed new type heterogeneous Fenton systems, including the one-center Cu-based Fenton-like system and the dual-center Fenton-like system, for solving the bottleneck problems. We think the dual-center Fenton-like system has actually broke the concept of the classical Fenton reaction, creating the electron-rich centers and electron-deficiency centers based on the polarization theory of electron distribution, which realizes the efficiently selective reduction of hydrogen peroxide and oxidative degradation of pollutants, solving the technical bottleneck problems of the classical Fenton reaction in water treatment.
Contents
1 Introduction
2 Classical Fenton reaction mechanism
3 Heterogeneous Fenton catalytic reaction mechanism
3.1 Heterogeneous Fenton reaction mechanism without considering organic pollutants
3.2 Heterogeneous Fenton reaction mechanism in consideration of organic pollutants
4 Development and utilization of heterogeneous Fenton catalysts
4.1 Zero-valent metal catalyst
4.2 Transition metal oxide catalyst
4.3 Metal species-supported catalysts
4.4 Metal ions-doped catalysts
5 Existing problems of heterogeneous Fenton catalytic system
6 Development of novel heterogeneous Fenton system and its catalytic mechanism for degradation of organic pollutants in water
6.1 One-center heterogeneous Fenton system
6.2 Dual-center heterogeneous Fenton-like system induced by lattice oxygen
6.3 Dual-center heterogeneous Fenton-like system induced by surface organic ligand
7 Conclusion and outlook

中图分类号: 

()
[1] Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G S. Energy & Environmental Science, 2014, 7:2831.
[2] Yang X J, Xu X M, Xu J, Han Y F. Journal of the American Chemical Society, 2013, 135:16058.
[3] Lee Y, Gerrity D, Lee M, Bogeat A E, Salhi E, Gamage S, Trenholm R A, Wert E C, Snyder S A, von Gunten U. Environmental Science & Technology, 2013, 47:5872.
[4] Tusar N N, Maucec D, Rangus M, Arcon I, Mazaj M, Cotman M, Pintar A, Kaucic V. Advanced Functional Materials, 2012, 22:820.
[5] Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T. Chemical Communications, 2006, (4):463.
[6] Navalon S, Martin R, Alvaro M, Garcia H. Angewandte Chemie-International Edition, 2010, 49:8403.
[7] Eisenhauer H R. Journal Water Pollution Control Federation, 1964, 36:1116.
[8] Yalfani M S, Contreras S, Medina F, Sueiras J. Applied Catalysis B-Environmental, 2009, 89:519.
[9] Perez M, Torrades F, Garcia-Hortal J A, Domenech X, Peral J. Applied Catalysis B-Environmental, 2002, 36:63.
[10] De Laat J, Gallard H, Ancelin S, Legube B. Chemosphere, 1999, 39:2693.
[11] Dewil R, Baeyens J, Neyens E. Journal of Hazardous Materials, 2005, 117:161.
[12] Silva P D E, Da Silva V L, Neto B D, Simonnot M O. Journal of Hazardous Materials, 2009, 161:967.
[13] Nowicka A M, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F. Angewandte Chemie-International Edition, 2010, 49:3006.
[14] Zhou X J, Zhang Y, Wang C, Wu X C, Yang Y Q, Zheng B, Wu H X, Guo S W, Zhang J Y. ACS Nano, 2012, 6:6592.
[15] Liu C H, Chen W J, Qing Z H, Zheng J, Xiao Y, Yang S, Wang L L, Li Y H, Yang R H. Analytical Chemistry, 2016, 88:3998.
[16] Zhang C, Bu W B, Ni D L, Zhang S J, Li Q, Yao Z W, Zhang J W, Yao H L, Wang Z, Shi J L. Angewandte Chemie-International Edition, 2016, 55:2101.
[17] Haber F, Weiss J. Naturwissenschaften, 1932, 20:948.
[18] Nidheesh P V. RSC Advances, 2015, 5:40552.
[19] Pignatello J J, Oliveros E, Mackay A. Critical Reviews in Environmental Science and Technology, 2006, 36:1.
[20] Ma J H, Song W J, Chen C C, Ma W H, Zhao J C, Tang Y L. Environmental Science & Technology, 2005, 39:5810.
[21] Mostaghim R, Ahmadibeni Y. Acta Chimica Slovenica, 2003, 50:569.
[22] Gabriel J, Shah V, Nesměrák K, Baldrian P, Nerud F. Folia Microbiologica, 2000, 45:573.
[23] Nichela D A, Berkovic A M, Costante M R, Juliarena M P, Einschlag F S G. Chemical Engineering Journal, 2013, 228:1148.
[24] Eberhardt M K, Ramirez G, Ayala E. The Journal of Organic Chemistry, 1989, 54:5922.
[25] Khachatryan L, Vejerano E, Lomnicki S, Dellinger B. Environmental Science & Technology, 2011, 45:8559.
[26] Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, 1997, 1337:319.
[27] Gutteridge J M C, Wilkins S. Biochimica et Biophysica Acta (BBA) -General Subjects, 1983, 759:38.
[28] Pecci L, Montefoschi G, Cavallini D. Biochemical and Biophysical Research Communications, 1997, 235:264.
[29] Baruch-Suchodolsky R, Fischer B. Biochemistry, 2009, 48:4354.
[30] Wang C, Liu L, Zhang L, Peng Y, Zhou F. Biochemistry, 2010, 49:8134.
[31] Jiang D, Li X, Liu L, Yagnik G B, Zhou F. The Journal of Physical Chemistry B, 2010, 114:4896.
[32] Liu L, Jiang D, Mcdonald A, Hao Y, Millhauser G L, Zhou F. Journal of the American Chemical Society, 2011, 133:12229.
[33] Gu C, Wang J, Liu S S, Liu G F, Lu H, Jin R F. Environmental Science & Technology, 2016, 50:9981.
[34] Vitale A A, Bernatene E A, Vitale M G, Pomilio A B. Journal of Physical Chemistry A, 2016, 120:5435.
[35] Sen Gupta S, Stadler M, Noser C A, Ghosh A, Steinhoff B, Lenoir D, Horwitz C P, Schramm K W, Collins T J. Science, 2002, 296:326.
[36] Huang W Y, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G. Environmental Science & Technology, 2013, 47:1952.
[37] Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K. Journal of Photochemistry and Photobiology A-Chemistry, 2004, 162:297.
[38] Lin H, Oturan N, Wu J, Zhang H, Oturan M A. Separation and Purification Technology, 2017, 173:218.
[39] Ammar H B. Ultrasonics Sonochemistry, 2016, 33:164.
[40] Navalon S, Alvaro M, Garcia H. Applied Catalysis B-Environmental, 2010, 99:1.
[41] Hartmann M, Kullmann S, Keller H. Journal of Materials Chemistry, 2010, 20:9002.
[42] Oliveira L C A, Lago R M, Rios R V R A, Augusti R, Sousa P P, Mussel W N, Fabris J D. Studies in Surface Science and Catalysis, 2000, 130:2165.
[43] Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Applied Catalysis B:Environmental, 2008, 83:131.
[44] Costa R C C, Lelis M D F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Catalysis Communications, 2003, 4:525.
[45] Costa R C C, Lelis M F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Journal of Hazardous Materials, 2006, 129:171.
[46] Xu L, Wang J. Environmental Science & Technology, 2012, 46:10145.
[47] Zubir N A, Yacou C, Motuzas J, Zhang X W, Zhao X S, Da Costa J C D. Chemical Communications, 2015, 51:9291.
[48] Pliego G, Zazo J A, Garcia-Munoz P, Munoz M, Casas J A, Rodriguez J J. Critical Reviews in Environmental Science and Technology, 2015, 45:2611.
[49] Quintanilla A, García-Rodríguez S, Domínguez C M, Blasco S, Casas J A, Rodriguez J J. Applied Catalysis B:Environmental, 2012, 111/112:81.
[50] Barreto-Rodrigues M, Silva F T, Paiva T C B. Journal of Hazardous Materials, 2009, 168:1065.
[51] Barreto-Rodrigues M, Silva F T, Paiva T C B. Journal of Hazardous Materials, 2009, 165:1224.
[52] Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B. Chemical Engineering Journal, 2009, 150:391.
[53] Kallel M, Belaid C, Boussahel R, Ksibi M, Montiel A, Elleuch B. Journal of Hazardous Materials, 2009, 163:550.
[54] Feitz A J, Joo S H, Guan J, Sun Q, Sedlak D L, Waite T D. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2005, 265:88.
[55] Liao C J, Chung T L, Chen W L, Kuo S L. Journal of Molecular Catalysis A-Chemical, 2007, 265:189.
[56] Dong G H, Ai Z H, Zhang L Z. Water Research, 2014, 66:22.
[57] Bokare A D, Choi W. Environmental Science & Technology, 2009, 43:7130.
[58] He D, Miller C J, Waite T D. Journal of Catalysis, 2014, 317:198.
[59] Zhu M, Diao G. The Journal of Physical Chemistry C, 2011, 115:18923.
[60] Xu L, Wang J. Applied Catalysis B:Environmental, 2012, 123/124:117.
[61] Sun S P, Lemley A T. Journal of Molecular Catalysis A:Chemical, 2011, 349:71.
[62] Sun S P, Zeng X, Lemley A T. Journal of Molecular Catalysis A:Chemical, 2013, 371:94.
[63] Chen F X, Xie S L, Huang X L, Qiu X H. Journal of Hazardous Materials, 2017, 322:152.
[64] Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C. Journal of the American Chemical Society, 2007, 129:10929.
[65] Huang X, Hou X, Jia F, Song F, Zhao J, Zhang L. ACS Applied Materials & Interfaces, 2017, 9:8751.
[66] Wu J J, Muruganandham M, Yang J S, Lin S S. Catalysis Communications, 2006, 7:901.
[67] Tiya-Djowe A, Laminsi S, Noupeyi G L, Gaigneaux E M. Applied Catalysis B-Environmental, 2015, 176:99.
[68] Pinto I S X, Pacheco P H V V, Coelho J V, Lorençon E, Ardisson J D, Fabris J D, De Souza P P, Krambrock K W H, Oliveira L C A, Pereira M C. Applied Catalysis B:Environmental, 2012, 119/120:175.
[69] Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y. Applied Catalysis B:Environmental, 2008, 84:468.
[70] Zhang Y Y, Deng J H, He C, Huang S S, Tian S H, Xiong Y. Environmental Technology, 2010, 31:145.
[71] Luo W, Zhu L H, Wang N, Tang H Q, Cao M J, She Y B. Environmental Science & Technology, 2010, 44:1786.
[72] Wang N, Zhu L, Lei M, She Y, Cao M, Tang H. ACS Catalysis, 2011, 1:1193.
[73] Zhang X Y, Ding Y B, Tang H Q, Han X Y, Zhu L H, Wang N. Chemical Engineering Journal, 2014, 236:251.
[74] Meeks N D, Smuleac V, Stevens C, Bhattacharyya D. Industrial & Engineering Chemistry Research, 2012, 51:9581.
[75] Sharma R K, Gulati S, Pandey A, Adholeya A. Applied Catalysis B:Environmental, 2012, 125:247.
[76] Martínez F, Molina R, Pariente M I, Siles J A, Melero J A. Catalysis Today, 2017, 280:176.
[77] Yang X J, Xu X M, Xu X C, Xu J, Wang H L, Semiat R, Han Y F. Catalysis Today, 2016, 276:85.
[78] Wang Y, Wang J F, Zou H M, Xie Y. RSC Advances, 2016, 6:15394.
[79] Di Luca C, Ivorra F, Massa P, Fenoglio R. Industrial & Engineering Chemistry Research, 2012, 51:8979.
[80] Bradu C, Frunza L, Mihalche N, Avramescu S M, Nea?ǎ M, Udrea I. Applied Catalysis B:Environmental, 2010, 96:548.
[81] Inchaurrondo N, Cechini J, Font J, Haure P. Applied Catalysis B:Environmental, 2012, 111/112:641.
[82] Kondru A K, Kumar P, Chand S. Journal of Hazardous Materials, 2009, 166:342.
[83] Prihod'ko R, Stolyarova I, Gündüz G, Taran O, Yashnik S, Parmon V, Goncharuk V. Applied Catalysis B:Environmental, 2011, 104:201.
[84] Wang X R, Yang W Z, Ji Y, Yin X S, Liu Y, Liu X Z, Zhang F Y, Chen B H, Yang N. RSC Advances, 2016, 6:26155.
[85] Li X F, Liu X, Xu L L, Wen Y Z, Ma J Q, Wu Z C. Applied Catalysis B-Environmental, 2015, 165:79.
[86] Barrault J, Bouchoule C, Tatibouët J M, Abdellaoui M, Majesté A, Louloudi I, Papayannakos N, Gangas N H. Studies in Surface Science and Catalysis, 2000, 130:749.
[87] Daud N K, Hameed B H. Desalination, 2011, 269:291.
[88] Fida H, Zhang G, Guo S, Naeem A. Journal of Colloid and Interface Science, 2017, 490:859.
[89] Ramirez J H, Costa C A, Madeira L M, Mata G, Vicente M A, Rojas-Cervantes M L, Lopez-Peinado A J, Martin-Aranda R M. Applied Catalysis B-Environmental, 2007, 71:44.
[90] Timofeeva M N, Khankhasaeva S T, Talsi E P, Panchenko V N, Golovin A V, Dashinamzhilova E T, Tsybulya S V. Applied Catalysis B:Environmental, 2009, 90:618.
[91] Galeano L A, Gil A, Vicente M A. Applied Catalysis B:Environmental, 2010, 100:271.
[92] Soria-Sánchez M, Castillejos-López E, Maroto-Valiente A, Pereira M F R, Órfão J J M, Guerrero-Ruiz A. Applied Catalysis B:Environmental, 2012, 121/122:182.
[93] Yang X J, Tian P F, Zhang C X, Deng Y Q, Xu J, Gong J L, Han Y F. Applied Catalysis B-Environmental, 2013, 134:145.
[94] Yoo S H, Jang D, Joh H I, Lee S. Journal of Materials Chemistry A, 2017, 5:748.
[95] Duarte F, Maldonado-Hódar F J, Pérez-Cadenas A F, Madeira L M. Applied Catalysis B:Environmental, 2009, 85:139.
[96] Variava M F, Church T L, Harris A T. Applied Catalysis B:Environmental, 2012, 123/124:200.
[97] Wan Z, Wang J L. Journal of Hazardous Materials, 2017, 324:653.
[98] Navalon S, De Miguel M, Martin R, Alvaro M, Garcia H. Journal of the American Chemical Society, 2011, 133:2218.
[99] Martin R, Navalon S, Alvaro M, Garcia H. Applied Catalysis B-Environmental, 2011, 103:246.
[100] Martin R, Navalon S, Delgado J J, Calvino J J, Alvaro M, Garcia H. Chemistry-A European Journal, 2011, 17:9494.
[101] Espinosa J C, Navalon S, Alvaro M, Garcia H. Catalysis Science & Technology, 2016, 6:7077.
[102] Sashkina K A, Polukhin A V, Labko V S, Ayupov A B, Lysikov A I, Parkhomchuk E V. Applied Catalysis B-Environmental, 2016, 185:353.
[103] Zhang Y T, Liu C, Xu B B, Qi F, Chu W. Applied Catalysis B-Environmental, 2016, 199:447.
[104] Han J, Li H Y, Xu X J, Yuan L Z, Wang N N, Yu H W. Materials Letters, 2016, 166:71.
[105] Zhang L L, Nie Y L, Hu C, Qu J H. Applied Catalysis B-Environmental, 2012, 125:418.
[106] Zhang L L, Lyu L, Nie Y L, Hu C. Separation and Purification Technology, 2016, 157:203.
[107] Zhang L L, Xu D A, Hu C, Shi Y L. Applied Catalysis B-Environmental, 2017, 207:9.
[108] Lyu L, Zhang L L, Hu C. Chemical Engineering Journal, 2015, 274:298.
[109] Lyu L, Zhang L L, Wang Q Y, Nie Y L, Hu C. Environmental Science & Technology, 2015, 49:8639.
[110] Lyu L, Zhang L L, Hu C, Yang M. Journal of Materials Chemistry A, 2016, 4:8610.
[111] Shi J G, Ai Z H, Zhang L Z. Water Research, 2014, 59:145.
[112] Liu W, Wang Y Y, Ai Z H, Zhang L Z. ACS Applied Materials & Interfaces, 2015, 7:28534.
[113] Hou X J, Huang X P, Ai Z H, Zhao J C, Zhang L Z. Journal of Hazardous Materials, 2016, 310:170.
[114] Hou X J, Huang X P, Jia F L, Ai Z H, Zhao J C, Zhang L Z. Environmental Science & Technology, 2017, 51:5118.
[115] Lyu L, Zhang L L, Hu C. Environmental Science-Nano, 2016, 3:1483.
[116] Lyu L, Zhang L L, He G Z, He H, Hu C. Journal of Materials Chemistry A, 2017, 5:7153.
[117] Li H, Shang J, Yang Z P, Shen W J, Ai Z H, Zhang L Z. Environmental Science & Technology, 2017, 51:5685.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[10] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[11] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[12] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[13] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[14] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[15] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
阅读次数
全文


摘要

多相芬顿催化水处理技术与原理