English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1168-1176 DOI: 10.7536/PC221222 前一篇   后一篇

• 综述 •

手性等离子体核壳纳米结构的设计及应用

刘文亮, 王宇琦, 李晓晗, 张轩瑜, 王继乾*()   

  1. 中国石油大学(华东)重质油国家重点实验室 生物工程与技术中心 青岛 266580
  • 收稿日期:2022-12-28 修回日期:2023-05-26 出版日期:2023-08-24 发布日期:2023-07-18
  • 作者简介:

    王继乾 中国石油大学(华东)化学化工学院教授。近年来主要致力于生物分子自组装与相关表界面科学问题的基础理论与技术开发研究,包括短肽自组装机制及调控、DNA分子自组装、生物聚合物制备与应用、生物表面活性剂开发与应用等研究方向。累计在《美国化学会志》和《自然·通讯》等期刊发表100余篇学术论文,授权发明专利20余项。

  • 基金资助:
    国家自然科学基金项目(22072181); 中国石油大学(华东)研究生创新基金项目(23CX04031A); 中央高校基本科研业务费专项资金资助

Design and Application of Chiral Plasmonic Core-Shell Nanostructures

Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang()   

  1. State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China),Qingdao 266580, China
  • Received:2022-12-28 Revised:2023-05-26 Online:2023-08-24 Published:2023-07-18
  • Contact: *e-mail: jqwang@upc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22072181); Innovation Fund Project for Graduate Student of China University of Petroleum(23CX04031A); Fundamental Research Funds for the Central Universities.

手性描述了一个物体不能与其镜像重叠的几何性质,自19世纪以来一直是化学和生物学中的一个关键概念。随着纳米技术的发展,手性等离子体纳米材料凭借其特殊的手性光学性质和良好的生物相容性已经成为科学家们的研究重点和手性功能材料开发的热点。然而,较弱的手性响应信号限制了其应用和发展。将手性等离子体纳米材料和核壳结构结合得到的手性等离子体核壳纳米结构是一种放大手性响应信号的有效策略。核壳纳米结构整合了内外两种材料的性质,互相补充各自的不足,能够进一步改善材料的物理化学性质,提升材料在各个领域的性能。本文依据手性分子的空间分布对手性等离子体核壳纳米结构的设计策略进行了总结,并综述了其在超灵敏传感和手性催化领域的应用,分析了目前尚存在的问题和可能的解决方式,对其未来的发展作了进一步展望。

Chirality describes the geometrical feature of an object that cannot overlap with its mirror image and has been a crucial concept in chemistry and biology since the 19th century. With the development of nanotechnology, chiral plasmonic nanomaterials are becoming the research focuses for scientists to develop chiral functional materials due to the special chiral optical properties and good biocompatibility. However, the relatively weak chiral signals limit their applications. Chiral plasmonic core-shell nanostructures combine the chiral plasmonic properties and core-shell structures, which is an effective strategy to amplify chiral signals. In addition, the core-shell nanostructure integrates the properties of both internal and external materials to complement each other, which can further improve the physicochemical properties and enhance the performance in various fields. This paper summarizes the design strategies of chiral plasmonic core-shell nanostructures based on the spatial distribution of chiral molecules, and reviews their applications in the fields of ultrasensitive sensing and chiral catalysis. We analyze the existing problems and their possible solutions, and make an outlook on their future development.

Contents

1 Introduction

2 Design strategies for chiral plasmonic core-shell nanostructures

2.1 Chiral molecules distributed on the shell

2.2 Chiral molecules distributed on the core

2.3 Chiral molecules distributed in the core-shell gap

3 Application of chiral plasmonic core-shell nanostructures

3.1 Ultra-sensitive sensing

3.2 Chiral catalysis

4 Conclusion and outlook

()
图1 (a)Au@DNA修饰的Ag的示意图;(b)Au@DNA修饰的Ag的制备示意图;(c)Au@DNA修饰的Ag的TEM图;(d)DNA以及Au@DNA修饰的Ag的紫外-可见吸收光谱;(e)DNA、Au@Ag、Au@DNA修饰的Ag的圆二色光谱[38]
Fig.1 (a)Schematic diagram of Au@DNA modified Ag. (b)Schematic diagram of the preparation of Au@DNA modified Ag. (c)TEM image of Au@DNA modified Ag. (d)UV-vis absorption spectra of DNA and Au@DNA modified Ag. (e)CD spectra of DNA, Au@Ag, and Au@DNA modified Ag[38]
图2 (a)DNA桥联的Au@AgAu的示意图;(b)DNA桥联的Au@AgAu的制备示意图;(c)DNA桥联的Au@AgAu的TEM图;(d)DNA桥联的Au@AgAu的圆二色光谱[39]
Fig.2 (a)Schematic diagram of DNA bridged Au@AgAu. (b)Schematic diagram of the preparation of DNA bridged Au@AgAu. (c)TEM images of DNA bridged Au@AgAu. (d)CD spectra of DNA bridged Au@AgAu[39]
图3 (a)Au@半胱氨酸修饰的Ag的示意图;(b)Au@半胱氨酸修饰的Ag的TEM图;(c)Au@半胱氨酸修饰的Ag的圆二色光谱;(d~f)Au@半胱氨酸修饰的Ag的手性响应信号放大策略[43]
Fig.3 (a)Schematic diagram of Au@cysteine modified Ag. (b)TEM images of Au@cysteine modified Ag(c)CD spectra of Au@cysteine modified Ag. (d~f)Chiral response signal amplification strategy for Au@cysteine modified Ag[43]
图4 (a)手性分子修饰的Au@Ag的示意图;(b)DNA修饰的Au@Ag的制备示意图;(c)DNA修饰的Au@Ag的TEM图[44] ;(d)半胱氨酸修饰的Au@Ag的制备示意图;(e)半胱氨酸修饰的Au@Ag的TEM图[45]
Fig.4 (a)Schematic diagram of chiral molecules modified Au@Ag. (b)Schematic diagram of the preparation of DNA modified Au@Ag.(c)TEM images of DNA modified Au@Ag[44]. (d)Schematic diagram of the preparation of cysteine modified Au@Ag.(e)TEM images of cysteine modified Au@Ag[45]
图5 (a)半胱氨酸修饰的Au@Ag的示意图;(b)半胱氨酸修饰的Au@Ag的制备示意图;(c)Au@半胱氨酸修饰的Ag的圆二色光谱;(d~f)Au@半胱氨酸修饰的Ag的手性响应信号放大策略[46]
Fig.5 (a)Schematic diagram of cysteine modified Au@Ag. (b)TEM image of cysteine modified Au@Ag.(c)CD spectra of cysteine modified Au@Ag. (d~f)Chiral response signal amplification strategy for cysteine modified Au@Ag[46]
图6 (a)青霉胺修饰的Au@AgAu的示意图;(b)青霉胺修饰的Au@AgAu的TEM图;(c)青霉胺修饰的Au@AgAu的制备示意图[47]
Fig.6 (a)Schematic diagram of penicillamine modified Au@AgAu. (b)TEM images of penicillamine modified Au@AgAu.(c)Schematic diagram of the preparation of penicillamine modified Au@AgAu[47]
表1 手性等离子体核壳纳米结构中手性分子的空间分布及其不对称因子
Table 1 Spatial distribution of chiral molecules in chiral plasmonic core-shell nanostructures and their g factors
图7 (a)DNA桥联的Au@AgAu应用于仄普托摩尔级别DNA检测传感[39] ;(b)青霉胺修饰的Au@AgAu应用于活体细胞中Zn2+检测[47]
Fig.7 (a)DNA bridged Au@AgAu for zeptomolar DNA detection and sensing[39] ;(b)penicillamine-modified Au@AgAu for Zn2+ detection and sensing in living cells[47]
图8 半胱氨酸修饰的Au@Ag应用于不对称催化[45]
Fig.8 Cysteine modified Au@Ag for asymmetric catalysis[45]
[1]
Zheng G C, He J J, Kumar V, Wang S L, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan L M, Wong K Y. Chem. Soc. Rev., 2021, 50(6): 3738.

doi: 10.1039/C9CS00765B     URL    
[2]
Liu B L, Wu F Q, Gui H, Zheng M, Zhou C W. ACS Nano, 2017, 11(1): 31.

doi: 10.1021/acsnano.6b06900     URL    
[3]
Akine S, Miyake H. Coord. Chem. Rev., 2022, 468: 214582.

doi: 10.1016/j.ccr.2022.214582     URL    
[4]
John N, Mariamma A T. Microchim. Acta, 2021, 188(12): 424.

doi: 10.1007/s00604-021-05066-8    
[5]
Zhao T, Yang B W, Ji S Y, Luo J Y, Liu Y, Zhong Y H, Lu B Y. Food Chem., 2023, 403: 134311.

doi: 10.1016/j.foodchem.2022.134311     URL    
[6]
Zhang Q, Mi S N, Xie Y F, Yu H, Guo Y H, Yao W R. Spectrochim. Acta, Part A, 2023, 287: 122018.

doi: 10.1016/j.saa.2022.122018     URL    
[7]
Zhang M J, Tang L, Duan A B, Zhang Y, Xiao F J, Zhu Y, Wang J J, Feng C Y, Yin N. Chem. Eng. J., 2023, 452: 139068.

doi: 10.1016/j.cej.2022.139068     URL    
[8]
Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. Anal. Chim. Acta, 2023, 1237: 340594.

doi: 10.1016/j.aca.2022.340594     URL    
[9]
Chen Y, Ma W T. PLoS Comput. Biol., 2020, 16(1): e1007592.

doi: 10.1371/journal.pcbi.1007592     URL    
[10]
Niinomi H, Sugiyama T, Cheng A C, Tagawa M, Ujihara T, Yoshikawa H Y, Kawamura R, Nozawa J, Okada J T, Uda S. J. Phys. Chem. C, 2021, 125(11): 6209.

doi: 10.1021/acs.jpcc.0c11109     URL    
[11]
Miandashti A R, Khorashad L K, Kordesch M E, Govorov A O, Richardson H H. ACS Nano, 2020, 14(4): 4188.

doi: 10.1021/acsnano.9b09062     pmid: 32176469
[12]
Xu L G, Wang X X, Wang W W, Sun M Z, Choi W J, Kim J Y, Hao C L, Li S, Qu A H, Lu M R, Wu X L, Colombari F M, Gomes W R, Blanco A L, de Moura A F, Guo X, Kuang H, Kotov N A, Xu C L. Nature, 2022, 601(7893): 366.

doi: 10.1038/s41586-021-04243-2    
[13]
Wu F X, Tian Y, Luan X X, Lv X L, Li F H, Xu G B, Niu W X. Nano Lett., 2022, 22(7): 2915.

doi: 10.1021/acs.nanolett.2c00094     URL    
[14]
Pan J H, Wang X Y, Zhang J J, Zhang Q, Wang Q B, Zhou C. Nano Res., 2022, 15(10): 9447.

doi: 10.1007/s12274-022-4520-2    
[15]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T. Nature, 2018, 556(7701): 360.

doi: 10.1038/s41586-018-0034-1    
[16]
Wu X L, Hao C L, Kumar J, Kuang H, Kotov N A, Liz-Marzan L M, Xu C L. Chem. Soc. Rev., 2018, 47(13): 4677.

doi: 10.1039/C7CS00894E     URL    
[17]
Zhan P F, Wang Z G, Li N, Ding B Q. ACS Catal., 2015, 5(3): 1489.

doi: 10.1021/cs5015805     URL    
[18]
Gao F L, Sun M Z, Ma W, Wu X L, Liu L Q, Kuang H, Xu C L. Adv. Mater., 2017, 29(18): 1606864.

doi: 10.1002/adma.v29.18     URL    
[19]
Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M. Nat. Nanotechnol., 2010, 5(11): 783.

doi: 10.1038/nnano.2010.209     pmid: 21037572
[20]
Henglein A. Chem. Rev., 1989, 89(8): 1861.

doi: 10.1021/cr00098a010     URL    
[21]
Spanhel L, Weller H, Henglein A. J. Am. Chem. Soc., 1987, 109(22): 6632.

doi: 10.1021/ja00256a012     URL    
[22]
Youn H C, Baral S, Fendler J H. J. Phys. Chem., 1988, 92(22): 6320.

doi: 10.1021/j100333a029     URL    
[23]
Dolamic I, Knoppe S, Dass A, Buergi T. Nat. Commun., 2012, 3: 798.

doi: 10.1038/ncomms1802     pmid: 22531183
[24]
Zhu M Z, Qian H F, Meng X M, Jin S S, Wu Z K, Jina R C. Nano Lett., 2011, 11(9): 3963.

doi: 10.1021/nl202288j     URL    
[25]
Roman-Velazquez C E, Noguez C, Garzon I L. J. Phys. Chem. B, 2003, 107(44): 12035.

doi: 10.1021/jp0356315     URL    
[26]
Govorov A O, Fan Z Y, Hernandez P, Slocik J M, Naik R R. Nano Lett., 2010, 10(4): 1374.

doi: 10.1021/nl100010v     URL    
[27]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, Lou X W. Adv. Mater., 2012, 24(38): 5166.

doi: 10.1002/adma.201202146     URL    
[28]
Jiang R B, Li B X, Fang C H, Wang J F. Adv. Mater., 2014, 26(31): 5274.

doi: 10.1002/adma.v26.31     URL    
[29]
Qi J, Lai X Y, Wang J Y, Tang H J, Ren H, Yang Y, Jin Q, Zhang L J, Yu R B, Ma G H, Su Z G, Zhao H J, Wang D. Chem. Soc. Rev., 2015, 44(19): 6749.

doi: 10.1039/C5CS00344J     URL    
[30]
Xie S F, Choi S I, Lu N, Roling L T, Herron J A, Zhang L, Park J, Wang J G, Kim M J, Xie Z X, Mavrikakis M, Xia Y N. Nano Lett., 2014, 14(6): 3570.

doi: 10.1021/nl501205j     URL    
[31]
Gao C B, Lu Z D, Liu Y, Zhang Q, Chi M F, Cheng Q, Yin Y D. Angew. Chem. Int. Ed., 2012, 51(23): 5629.

doi: 10.1002/anie.201108971     URL    
[32]
Zhao L, Zhou Y, Niu G M, Gao F C, Sun Z W, Li H, Jiang Y Y. Part. Part. Syst. Charact., 2022, 39(4): 2100231.

doi: 10.1002/ppsc.v39.4     URL    
[33]
Wu W B, Pauly M. Mater. Adv., 2022, 3(1): 186.

doi: 10.1039/D1MA00915J     URL    
[34]
Cao Z L, Gao H, Qiu M, Jin W, Deng S Z, Wong K Y, Lei D Y. Adv. Mater., 2020, 32(41): 1907151.

doi: 10.1002/adma.v32.41     URL    
[35]
Ma W, Xu L G, Wang L B, Xu C L, Kuang H. Adv. Funct. Mater., 2019, 29(1): 1805512.

doi: 10.1002/adfm.v29.1     URL    
[36]
Guerrero-Martínez A, Alonso-GÓmez J L, AuguiÉ B, Cid M M, Liz-Marzán L M. Nano Today, 2011, 6(4): 381.

doi: 10.1016/j.nantod.2011.06.003     URL    
[37]
Slocik J M, Govorov A O, Naik R R. Nano Lett., 2011, 11(2): 701.

doi: 10.1021/nl1038242     URL    
[38]
Lu F, Tian Y, Liu M Z, Su D, Zhang H, Govorov A O, Gang O. Nano Lett., 2013, 13(7): 3145.

doi: 10.1021/nl401107g     URL    
[39]
Zhao Y, Xu L G, Ma W, Wang L B, Kuang H, Xu C L, Kotov N A. Nano Lett., 2014, 14(7): 3908.

doi: 10.1021/nl501166m     URL    
[40]
Ma W, Kuang H, Xu L G, Ding L, Xu C L, Wang L B, Kotov N A. Nat. Commun., 2013, 4: 2689.

doi: 10.1038/ncomms3689    
[41]
Wu X L, Xu L G, Ma W, Liu L Q, Kuang H, Kotov N A, Xu C L. Adv. Mater., 2016, 28(28): 5907.

doi: 10.1002/adma.201601261     URL    
[42]
Sun M Z, Ma W, Xu L G, Wang L B, Kuang H, Xu C L. J. Mater. Chem. C, 2014, 2(15): 2702.

doi: 10.1039/C4TC00040D     URL    
[43]
Bao Z Y, Zhang W, Zhang Y L, He J J, Dai J Y, Yeung C T, Law G L, Lei D Y. Angew. Chem. Int. Ed., 2017, 56(5): 1283.

doi: 10.1002/anie.v56.5     URL    
[44]
Wu X L, Xu L G, Ma W, Liu L Q, Kuang H, Yan W J, Wang L B, Xu C L. Adv. Funct. Mater., 2015, 25(6): 850.

doi: 10.1002/adfm.201403161     URL    
[45]
Hao C L, Xu L G, Ma W, Wu X L, Wang L B, Kuang H, Xu C L. Adv. Funct. Mater., 2015, 25(36): 5816.

doi: 10.1002/adfm.201502429     URL    
[46]
Hou S, Yan J, Hu Z J, Wu X C. Chem. Commun., 2016, 52(10): 2059.

doi: 10.1039/C5CC08505E     URL    
[47]
Hao C L, Xu L G, Sun M Z, Ma W, Kuang H, Xu C L. Adv. Funct. Mater., 2018, 28(33): 1802372.

doi: 10.1002/adfm.v28.33     URL    
[48]
Wu X L, Xu L G, Liu L Q, Ma W, Yin H H, Kuang H, Wang L B, Xu C L, Kotov N A. J. Am. Chem. Soc., 2013, 135(49): 18629.

doi: 10.1021/ja4095445     URL    
[49]
Wen T, Hou S, Yan J, Zhang H, Liu W Q, Ji Y L, Wu X C. RSC Adv., 2014, 4(85): 45159.

doi: 10.1039/C4RA07642G     URL    
[50]
Li S, Xu L G, Ma W, Wu X L, Sun M Z, Kuang H, Wang L B, Kotov N A, Xu C L. J. Am. Chem. Soc., 2016, 138(1): 306.

doi: 10.1021/jacs.5b10309     URL    
[51]
Narayanan R, El-Sayed M A. J. Phys. Chem. B, 2005, 109(26): 12663.

doi: 10.1021/jp051066p     URL    
[52]
Pedrueza-Villalmanzo E, Pineider F, Dmitriev A. Nanophotonics, 2020, 9(2): 481.

doi: 10.1515/nanoph-2019-0430     URL    
[53]
Silverio D L, Torker S, Pilyugina T, Vieira E M, Snapper M L, Haeffner F, Hoveyda A H. Nature, 2013, 494(7436): 216.

doi: 10.1038/nature11844    
[54]
Zhuo C X, Zhang W, You S L. Angew. Chem. Int. Ed., 2012, 51(51): 12662.

doi: 10.1002/anie.201204822     URL    
[55]
Chen M, Roush W R. J. Am. Chem. Soc., 2012, 134(26): 10947.

doi: 10.1021/ja3031467     URL    
[56]
Lumbroso A, Cooke M L, Breit B. Angew. Chem. Int. Ed., 2013, 52(7): 1890.

doi: 10.1002/anie.v52.7     URL    
[57]
White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem. Soc. Rev., 2009, 38(2): 481.

doi: 10.1039/B802654H     URL    
[58]
Shaw S, White J D. Chem. Rev., 2019, 119(16): 9381.

doi: 10.1021/acs.chemrev.9b00074     URL    
[59]
Wu B, Parquette J R, RajanBabu T V. Science, 2009, 326(5960): 1662.

doi: 10.1126/science.1180739     URL    
[60]
Mamontova E, Rodriguez-Castillo M, Oliviero E, Guari Y, Larionova J, Monge M, Long J. Inorg. Chem. Front., 2021, 8(9): 2248.

doi: 10.1039/D1QI00008J     URL    
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[3] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[4] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[5] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[6] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[7] 龚德君, 高冠斌, 张明曦, 孙涛垒. 手性金团簇的制备、性质及应用[J]. 化学进展, 2016, 28(2/3): 296-307.
[8] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[9] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[10] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[11] 李雷, 李彦兴, 姚瑶, 姚良宏, 季伟捷, 区泽棠. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690.
[12] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[13] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[14] 张月成, 赵姗姗, 米国瑞, 赵继全. 仲醇的氧化动力学拆分[J]. 化学进展, 2012, 24(0203): 212-224.
[15] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.