English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2386-2404 DOI: 10.7536/PC220301 前一篇   后一篇

• 综述 •

催化水解反应的肽基模拟酶的活性来源、催化机理及应用

赵自通1, 张真真1, 梁志宏1,2,*()   

  1. 1 中国农业大学 食品科学与营养工程学院 北京 100083
    2 食品质量与安全北京实验室 北京 100083
  • 收稿日期:2022-03-01 修回日期:2022-04-16 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 梁志宏
  • 作者简介:

    梁志宏 博士,中国农业大学食品科学与营养工程学院副教授,博士生导师;农业部农产品质量安全监督检验测试中心(北京)微生物室主任。主要研究方向为食品及原料中真菌毒素脱除与源头控制,真菌毒素脱毒酶的理性设计改造,食品中有害微生物/代谢产物的风险评估与控制。

  • 基金资助:
    国家自然科学基金项目(32172170); 山东省自然科学基金项目(ZR202102260301)

The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase

Zitong Zhao1, Zhenzhen Zhang1, Zhihong Liang1,2()   

  1. 1 College of Food Science and Nutritional Engineering, China Agricultural University,Beijing 100083,China
    2 Food Quality and Safety Beijing Laboratory,Beijing 100083,China
  • Received:2022-03-01 Revised:2022-04-16 Online:2022-11-24 Published:2022-06-25
  • Contact: Zhihong Liang
  • Supported by:
    National Natural Science Foundation of China(32172170); Shandong Natural Science Foundation(ZR202102260301)

肽基材料由于其与蛋白质高度相似和结构可控等优势,是构建人工模拟酶的一种理想材料;此外,小肽中氨基酸排列的多样性、序列的自组装特性、纳米结构稳定性、结构简单易于设计、良好生物相容性等优势,使得构建具有高效催化活性的肽基模拟酶具有非常好的应用前景。利用肽基材料通过理性设计活性位点来构建模拟酶具有多方面优势:(1) 氨基酸序列可以直接从天然酶中的活性位点获得,保留酶的功能,但降低了酶固有的复杂性;(2) 肽序列中可以嵌入各种具有特定结构及功能的活性位点,便于对模拟酶进行人工理性设计;(3) 肽具有良好的生物相容性,可以在温和条件下催化反应进行。根据催化降解化学键的不同,可将肽基水解模拟酶分为以下几种:催化酯键降解的肽基模拟酶、催化肽键降解肽基模拟酶、催化糖苷键水解的肽基模拟酶。本文主要分析了具有水解酶活性的肽基模拟酶的活性来源、构建方法及微观结构、催化反应类型、催化影响因素、活性改善方法、作用机理及未来潜在应用等;以期为构建具有高效水解催化活性的模拟酶提供借鉴,推进肽基水解模拟酶的研究发展及实际应用。

Small peptides are the ideal material to construct artificial enzymes due to their advantages of high similarity to natural enzymes and controllable structure. Small peptides have more simple structures which makes them convenient for rational design. Meanwhile, the diversity of amino acids arrangement, self-assembly characteristics of the sequence, the stability of the nanostructure, and good biocompatibility make it possible to construct high-efficiency catalytic active peptide-based artificial enzymes with broad application prospects. There are many advantages to using peptide-based materials for rationally designing active sites to construct artificial enzymes. (1) The amino acid sequences can be derived directly from the active sites in the natural enzyme, therefore preserving the function of enzymes but reducing much of the complexity that is inherent to nature enzymes; (2) Various active sites with specific structures and functions can be embedded in the peptide sequence, which is convenient for the artificial rational design of the artificial enzymes. (3) Peptides have good biocompatibility and hydrolysis reaction under mild conditions. According to the different catalytic degradation of the chemical bond, the peptide-based artificial hydrolases are mainly divided into the following categories: catalytic ester bond degradation peptide-based artificial enzyme, catalytic peptide bond degradation peptide-based artificial enzyme, catalytic glycosidic bond degradation peptide-based artificial enzyme. Therefore, this review mainly summarizes the peptide-based artificial hydrolase from activity origin, construction methods, microstructure, catalytic reaction type, catalytic influencing factors, activity improvement methods, activity mechanism, and future application. To promote the designing of peptide-based artificial enzymes with more efficient catalytic activity, accelerate the development and practical application of peptide-based artificial hydrolase.

Contents

1 Introduction

2 Activity origin of peptide-based artificial hydrolase

3 Catalytic reaction type of peptide-based artificial hydrolase

3.1 Catalytic ester bond hydrolysis

3.2 Catalytic peptide bond hydrolysis

3.3 Catalytic glycosidic bond hydrolysis

4 Activity improvement of peptide-based artificial hydrolase

5 Research progress in the application of peptide-based artificial hydrolase

6 Conclusion and prospects

()
图1 (A) 催化三联体对肽键的亲核攻击作用,含亲核试剂的残基显示为红色,红点表示亲核原子,组氨酸和酸性残基分别用蓝色和绿色表示;(B) 常见天然酶催化降解的化学键,箭头表示亲核攻击的位置[26]
Fig. 1 (A) Nucleophilic attack on the peptide bond by the catalytic triad. The nucleophile-bearing residue is shown in red; the red dot indicates the nucleophilic atom. The histidine and acidic residues are shown in blue and green, respectively. (B) The bonds are cleaved by various classes of enzymes. Arrows indicate the sites of nucleophilic attack[26]
图2 小分子肽的结构:(A) 一级结构;(B) 二级结构;(C) 自组装纳米结构;(D) Aβ(16~22)的组装过程
Fig. 2 Peptide structures. (A) Primary structure; (B) secondary structures; (C) higher-order self-assembled nanostructures; (D) model for the progressive transitions observed for Aβ(16~22)
图3 肽基模拟酶的构建原理及过程示意图
Fig. 3 principle and process of the construction of peptide-based artificial enzymes
表1 具有催化酯键降解功能的肽基模拟酶
Table 1 Ester bond hydrolase activity reported for peptide-based artificial enzymes
表2 具有催化肽键降解功能的肽基模拟酶
Table 2 peptide bond hydrolase activity reported for peptide-based artificial enzymes
表3 具有催化糖苷键降解功能的肽基模拟酶
Table 3 Glycosidic bond hydrolase activity reported for peptide-based artificial enzymes
图4 催化酯键降解的肽基模拟酶[38]
Fig. 4 Peptide-bond degraded peptide-based artificial enzyme[38]
图5 具有锌离子结合能力的酯键降解肽基模拟酶的结构及催化机理[39]
Fig. 5 Structure and catalytic mechanism of ester bond degradation peptide-based artificial enzyme with zinc ion binding ability[39]
图6 组氨酸金纳米线[40]
Fig. 6 Histidine gold nanowire[40]
图7 AuNP@CDs-Azo-GFGH的结构、催化过程及催化速率常数[16]
Fig. 7 The structure, catalytic process and catalytic rate constant of AuNP@CDs-Azo-GFGH[16]
图8 肽-金纳米颗粒组成的酯键降解模拟酶的结构设计及催化机理[43]
Fig. 8 Structure and catalytic mechanism of ester bond degradation artificial enzyme composed of peptide-gold nanoparticles[43]
图9 分子印迹法构建肽基酯键水解模拟酶过程示意图[21]
Fig. 9 Molecular imprinting method constructs peptide-based ester bond hydrolysis artificial enzyme[21]
图10 光控制结构变化可调节活性模拟酶的催化过程[47]
Fig. 10 Catalytic process of modulating active peptide-based artificial enzyme[47]
图11 pH控制活性可调节模拟酶的结构及催化过程[49]
Fig. 11 The structure and catalytic process of pH control activity adjustable peptide-based artificial enzymes[49]
图12 单个苯丙氨酸与锌离子通过自组装形成酯键降解模拟酶;(A) 天然碳酸酐酶;(B) 苯丙氨酸模拟酶催化过程;(C) 苯丙氨酸模拟酶催化机理[50]
Fig. 12 Single phenylalanine and zinc ions form an ester bond degradation artificial enzyme by self-assembly. (A) Natural carbonic anhydrase; (B) phenylalanine artificial enzyme catalytic process; (C) phenylalanine artificial enzyme catalytic mechanism[50]
图13 组氨酸环二肽自组装模拟酶的构建原理[30]
Fig. 13 Design of a cyclic dipeptide supramolecular assembly-based nano-superstructure artificial enzyme[30]
图14 具有过氧化物酶及酯酶活性的多功能肽基模拟酶[52]
Fig. 14 Multifunctional peptide-based artificial enzyme having peroxidase and esterase activity[52]
图15 肽键的自然降解反应
Fig. 15 Peptide bond hydrolysis in neutral solution
图16 胰蛋白酶的催化机理
Fig. 16 Catalytic mechanism of trypsin
图17 基于小肽与多金属氧酸盐组成的多功能模拟酶的构建及对不同底物的降解[56]
Fig. 17 Construction of multifunctional artificial enzyme based on small peptide and polyoxometalate and degradation of different substrates[56]
图18 MMP的激活原理及JAL-TA9的降解位点[59]
Fig. 18 MMP activation principle and JAL-TA9 degradation site[59]
图19 ANA-TA9降解Aβ蛋白的可能作用机制[60]
Fig. 19 Estimated cleavage mechanism of aggregated Aβ42 by ANA-TA9[60]
图20 糖苷酶的催化机理
Fig. 20 Catalytic mechanism of glycosidase
图21 催化糖苷键降解的肽基模拟酶[29,70]
Fig. 21 Catalyzed a glycosyne bond degraded peptide-based artificial enzyme[29,70]
图22 肽基水解模拟酶在降解纤维素、降解塑化剂、治疗AD中的应用[29,34,61,72]
Fig. 22 Peptide hydrolyzed artificial enzyme in the degradation of cellulose, degradation plasticizer, treatment in AD[29,34,61,72]
图23 微生物源小分子物质对赭曲霉毒素A脱除
Fig. 23 Removal of OTA by microbial source small molecular substances
[1]
Eisenmesser E Z, Bosco D A, Akke M, Kern D. Science, 2002, 295(5559): 1520.

pmid: 11859194
[2]
Raveendran S, Parameswaran B, Ummalyma S B, Abraham A, Mathew A K, Madhavan A, Rebello S, Pandey A. Food Technol. Biotechnol., 2018, 56(1): 16.
[3]
Chaudhary S, Sagar S, Kumar M, Sengar R, Tomar A. SAJFTE, 2015, 1(3&4): 190.

doi: 10.46370/sajfte.2015.v01i03and04.01     URL    
[4]
Saravanan A, Kumar P S, Vo D V N, Jeevanantham S, Karishma S, Yaashikaa P R. J. Hazard. Mater., 2021, 419: 126451.

doi: 10.1016/j.jhazmat.2021.126451     URL    
[5]
Wei X L, Han P P, You C. Chin. J. Chem. Eng., 2020, 28(11): 2799.

doi: 10.1016/j.cjche.2020.05.022     URL    
[6]
Dinmukhamed T, Huang Z Y, Liu Y F, Lv X Q, Li J H, Du G C, Liu L. Syst. Microbiol. Biomanufacturing, 2021, 1(1): 15.
[7]
Makam P, Yamijala S S, Tao K, Shimon L J, Gazit E. Nat. Catal., 2019, 2(11):977.

doi: 10.1038/s41929-019-0348-x     URL    
[8]
Zozulia O, Dolan M A, Korendovych I V. Chem. Soc. Rev., 2018, 47(10): 3621.

doi: 10.1039/c8cs00080h     pmid: 29594277
[9]
Castillo N E T, Melchor-Martínez E M, Sierra J S O, Ramírez-Torres N M, Sosa-Hernández J E, Iqbal H M, Parra-Saldívar R. Int. J. Biol. Macromol., 2021, 179: 80.

doi: 10.1016/j.ijbiomac.2021.03.002     pmid: 33667559
[10]
Naveen Prasad S, Bansal V, Ramanathan R. Trac Trends Anal. Chem., 2021, 144: 116429.

doi: 10.1016/j.trac.2021.116429     URL    
[11]
Huang Y Y, Ren J S, Qu X G. Chem. Rev., 2019, 119(6): 4357.

doi: 10.1021/acs.chemrev.8b00672     URL    
[12]
Nothling M D, Xiao Z Y, Bhaskaran A, Blyth M T, Bennett C W, Coote M L, Connal L A. ACS Catal., 2019, 9(1): 168.

doi: 10.1021/acscatal.8b03326     URL    
[13]
Liu S Y, Du P D, Sun H, Yu H Y, Wang Z G. ACS Catal., 2020, 10(24): 14937.

doi: 10.1021/acscatal.0c03753     URL    
[14]
Liu Q, Wan K, Shang Y, Wang Z, Ding B. Nat. Mater., 2021, 20(3): 395.

doi: 10.1038/s41563-020-00856-6     URL    
[15]
Kim M C, Lee S Y. Nanoscale, 2015, 7(40): 17063.

doi: 10.1039/C5NR04893A     URL    
[16]
Tan X L, Xu Y L, Lin S J, Dai G F, Zhang X J, Xia F, Dai Y. J. Catal., 2021, 402: 125.

doi: 10.1016/j.jcat.2021.08.023     URL    
[17]
Song R H, Wu X L, Xue B, Yang Y Q, Huang W M, Zeng G X, Wang J, Li W F, Cao Y, Wang W, Lu J X, Dong H. J. Am. Chem. Soc., 2019, 141(1): 223.

doi: 10.1021/jacs.8b08893     URL    
[18]
Mikolajczak D J, Koksch B. Catalysts, 2019, 9(11): 903.

doi: 10.3390/catal9110903     URL    
[19]
Song Q, Cheng Z H, Kariuki M, Hall S C L, Hill S K, Rho J Y, Perrier S. Chem. Rev., 2021, 121(22): 13936.

doi: 10.1021/acs.chemrev.0c01291     URL    
[20]
Metrano A J, Chinn A J, Shugrue C R, Stone E A, Kim B, Miller S J. Chem. Rev., 2020, 120(20): 11479.

doi: 10.1021/acs.chemrev.0c00523     URL    
[21]
Zhu M J, Wang M F, Qi W, Su R X, He Z M. J. Mater. Chem. B, 2019, 7(24): 3804.

doi: 10.1039/C9TB00408D     URL    
[22]
Hamley I W. Biomacromolecules, 2021, 22(5): 1835.

doi: 10.1021/acs.biomac.1c00240     pmid: 33843196
[23]
Rout S K, Friedmann M P, Riek R, Greenwald J. Nat. Commun., 2018, 9: 234.

doi: 10.1038/s41467-017-02742-3     URL    
[24]
Buchholz K, Kasche V, Bornscheuer U. Biocatalysts and enzyme technology, John Wiley & Sons, 2005.
[25]
Schneider F. Angew. Chem. Int. Ed. Engl., 1978, 17(8): 583.

doi: 10.1002/anie.197805831     URL    
[26]
Dodson G. Trends Biochem. Sci., 1998, 23(9): 347.

pmid: 9787641
[27]
Polgár L. Cell. Mol. Life Sci. CMLS, 2005, 62(19/20): 2161.

doi: 10.1007/s00018-005-5160-x     URL    
[28]
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn R V. Chem. Rev., 2021, 121(22): 13869.

doi: 10.1021/acs.chemrev.1c00089     URL    
[29]
He X X, Zhang F Y, Liu J F, Fang G Z, Wang S. Nanoscale, 2017, 9(45): 18066.

doi: 10.1039/C7NR06525F     URL    
[30]
Chen Y, Yang Y, Orr A A, Makam P, Redko B, Haimov E, Wang Y, Shimon L J, Rencus-Lazar S, Ju M, Tamamis P, Dong H, Gazit E. Angewandte Chemie, 2021, 60: 17164.
[31]
Der B S, Edwards D R, Kuhlman B. Biochemistry, 2012, 51(18): 3933.

doi: 10.1021/bi201881p     URL    
[32]
Huang K Y, Yu C C, Horng J C. Biomacromolecules, 2020, 21(3): 1195.

doi: 10.1021/acs.biomac.9b01620     URL    
[33]
Wang M F, Lv Y Q, Liu X J, Qi W, Su R X, He Z M. ACS Appl. Mater. Interfaces, 2016, 8(22): 14133.

doi: 10.1021/acsami.6b04670     URL    
[34]
Li X, Li J P, Hao S J, Han A L, Yang Y Y, Fang G Z, Liu J F, Wang S. J. Hazard. Mater., 2021, 403: 123873.

doi: 10.1016/j.jhazmat.2020.123873     URL    
[35]
Zaramella D, Scrimin P, Prins L J. J. Am. Chem. Soc., 2012, 134(20): 8396.

doi: 10.1021/ja302754h     pmid: 22559143
[36]
Razkin J, Nilsson H, Baltzer L. J. Am. Chem. Soc., 2007, 129(47):14752.

pmid: 17985898
[37]
Hahn K W, Klis W A, Stewart J M. Science, 1990, 248(4962): 1544.

pmid: 2360048
[38]
Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129(40): 12082.

doi: 10.1021/ja075044n     URL    
[39]
Al-Garawi Z S, McIntosh B A, Neill-Hall D, Hatimy A A, Sweet S M, Bagley M C, Serpell L C. Nanoscale, 2017, 9(30): 10773.

doi: 10.1039/c7nr02675g     pmid: 28722055
[40]
Djalali R, Chen Y F, Matsui H. J. Am. Chem. Soc., 2002, 124(46): 13660.

pmid: 12431080
[41]
Sun M Z, Xu L G, Qu A H, Zhao P, Hao T T, Ma W, Hao C L, Wen X D, Colombari F M, de Moura A F, Kotov N A, Xu C L, Kuang H. Nat. Chem., 2018, 10(8): 821.

doi: 10.1038/s41557-018-0083-y     URL    
[42]
Sun Y H, Zhao C Q, Gao N, Ren J S, Qu X G. Chem. Eur. J., 2017, 23(72): 18146.

doi: 10.1002/chem.201704579     URL    
[43]
Mikolajczak D J, Heier J L, Schade B, Koksch B. Biomacromolecules, 2017, 18(11): 3557.

doi: 10.1021/acs.biomac.7b00887     pmid: 28925256
[44]
Litowski J R, Hodges R S. J. Biol. Chem., 2002, 277(40): 37272.

doi: 10.1074/jbc.M204257200     URL    
[45]
Kecili R, Say R, Ersöz A, Hür D, Denizli A. Polymer, 2012, 53(10): 1981.

doi: 10.1016/j.polymer.2012.03.021     URL    
[46]
Wulff G, Liu J Q. Acc. Chem. Res., 2012, 45(2): 239.

doi: 10.1021/ar200146m     URL    
[47]
Zhao Y N, Lei B Q, Wang M F, Wu S T, Qi W, Su R X, He Z M. J. Mater. Chem. B, 2018, 6(16): 2444.

doi: 10.1039/C8TB00448J     URL    
[48]
Singh A, Joseph J P, Gupta D, Miglani C, Mavlankar N A, Pal A. Nanoscale, 2021, 13(31): 13401.

doi: 10.1039/D1NR03655F     URL    
[49]
Zhang C Q, Shafi R, Lampel A, MacPherson D, Pappas C G, Narang V, Wang T, Maldarelli C, Ulijn R V. Angew. Chem. Int. Ed., 2017, 56(46): 14511.

doi: 10.1002/anie.201708036     URL    
[50]
Adler-Abramovich L, Vaks L, Carny O, Trudler D, Magno A, Caflisch A, Frenkel D, Gazit E. Nat. Chem. Biol., 2012, 8(8): 701.

doi: 10.1038/nchembio.1002     pmid: 22706200
[51]
Sarkhel B, Chatterjee A, Das D. J. Am. Chem. Soc., 2020, 142(9): 4098.

doi: 10.1021/jacs.9b13517     URL    
[52]
Chatterjee A, Afrose S P, Ahmed S, Venugopal A, Das D. Chem. Commun., 2020, 56(57): 7869.

doi: 10.1039/D0CC00279H     URL    
[53]
Radzicka A, Wolfenden R. J. Am. Chem. Soc., 1996, 118(26): 6105.

doi: 10.1021/ja954077c     URL    
[54]
Ho P H, Mihaylov T, Pierloot K, Parac-Vogt T N. Inorg. Chem., 2012, 51(16): 8848.

doi: 10.1021/ic300761g     URL    
[55]
Ho P H, Stroobants K, Parac-Vogt T N. Inorg. Chem., 2011, 50(23): 12025.

doi: 10.1021/ic2015034     URL    
[56]
Gao N, Dong K, Zhao A, Sun H, Ying W, Ren J, Qu X. Nano Res., 2016, 9:1079.

doi: 10.1007/s12274-016-1000-6     URL    
[57]
Ikehara K. Orig. Life Evol. Biospheres, 2014, 44(4): 299.
[58]
Oba T, Fukushima J, Maruyama M, Iwamoto R, Ikehara K. Orig. Life Evol. Biospheres, 2005, 35(5): 447.
[59]
Nakamura R, Konishi M, Taniguchi M, Hatakawa Y, Akizawa T. Preprints, 2018, 2018010106.
[60]
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Saito M, Akizawa T. Heliyon, 2019, 5(9): e02454.

doi: 10.1016/j.heliyon.2019.e02454     URL    
[61]
Hatakawa Y, Tanaka A, Furubayashi T, Nakamura R, Konishi M, Akizawa T, Sakane T. Pharmaceutics, 2021, 13(10): 1673.

doi: 10.3390/pharmaceutics13101673     URL    
[62]
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Tanaka A, Matsuda A, Saito M, Akizawa T. Alzheimers Dement. Transl. Res. Clin. Interv., 2021, 7(1): e12146.
[63]
Nakamura R, Konishi M, Sakaguchi Y, Hatakawa Y, Tanaka A, Sakane T, Saito M, Akizawa T. J. Pharm. Pharmacol. Res., 2020, 4(2): 23.
[64]
Nakamura R, Konishi M, Taniguchi M, Hatakawa Y, Akizawa T. Peptides, 2019, 116: 71.

doi: S0196-9781(19)30030-0     pmid: 30930080
[65]
Nakamura R, Konishi M, Higashi Y, Saito M, Akizawa T. Integr. Mol. Med., 2019, 6(4): 1.
[66]
Nakamura R, Konishi M, Hatakawa Y, Saito M, Akizawa T. J. Royal. Sci., 2019, 1: 30.
[67]
Furukawa H, Kobayashi N, Itaya Y, Satsuma A, Shimizu K I. Green Chem., 2009, 11(10): 1627.

doi: 10.1039/b913737h     URL    
[68]
Shimizu K I, Furukawa H, Kobayashi N, Itaya Y, Satsuma A. Green Chem., 2009, 11(10): 1627.

doi: 10.1039/b913737h     URL    
[69]
Sugano Y, Vestergaard M C, Saito M, Tamiya E. Chem. Commun., 2011, 47(25): 7176.

doi: 10.1039/c1cc10927h     URL    
[70]
He X X, Zhang F Y, Zhang L, Zhang Q, Fang G Z, Liu J F, Wang S, Zhang S Q. J. Mater. Chem. B, 2017, 5(26): 5225.

doi: 10.1039/C7TB01426K     URL    
[71]
Baruch-Leshem A, Chevallard C, Gobeaux F, Guenoun P, Rapaport H. Colloids Surf., B, 2021, 203: 111751.
[72]
Li X, Li J P, Zhu J X, Hao S J, Fang G Z, Liu J F, Wang S. Chem. Commun., 2019, 55(89): 13458.

doi: 10.1039/C9CC06794A     URL    
[73]
Hu H N, Jia X, Wang Y P, Liang Z H. World Mycotoxin J., 2018, 11(4): 559.

doi: 10.3920/WMJ2017.2296     URL    
[74]
Peng M X, Zhao Z T, Liang Z H. Food Control, 2022, 133: 108611.

doi: 10.1016/j.foodcont.2021.108611     URL    
[75]
Zastrow M L, Peacock A F A, Stuckey J A, Pecoraro V L. Nat. Chem., 2012, 4(2): 118.

doi: 10.1038/nchem.1201     URL    
[76]
Zhang C Q, Xue X D, Luo Q, Li Y W, Yang K N, Zhuang X X, Jiang Y G, Zhang J C, Liu J Q, Zou G Z, Liang X J. ACS Nano, 2014, 8(11): 11715.

doi: 10.1021/nn5051344     URL    
[77]
Rufo C M, Moroz Y S, Moroz O V, Stöhr J, Smith T A, Hu X Z, DeGrado W F, Korendovych I V. Nat. Chem., 2014, 6(4): 303.

doi: 10.1038/nchem.1894     URL    
[78]
Huang Z P, Guan S W, Wang Y G, Shi G N, Cao L N, Gao Y Z, Dong Z Y, Xu J Y, Luo Q, Liu J Q. J. Mater. Chem. B, 2013, 1(17): 2297.

doi: 10.1039/c3tb20156b     URL    
[79]
Sugano Y, Kuittinen S, Turunen O, Pappinen A. Bioinspir. Biomim., 2019, 14(3): 036007.

doi: 10.1088/1748-3190/ab03de     URL    
[1] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[2] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[3] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[4] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[5] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[6] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[7] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[8] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[9] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[10] 解英娟, 吴志娇, 张晓, 马佩军, 朴玲钰. 混晶TiO2光催化剂的制备及机理研究[J]. 化学进展, 2014, 26(07): 1120-1131.
[11] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[12] 金强 张红漫 严立石 黄和. 生物质半纤维素稀酸水解反应*[J]. 化学进展, 2010, 22(04): 654-662.
[13] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.
[14] 张君涛,张国利,冯霄. 乙烯齐聚制α-烯烃镍系催化剂[J]. 化学进展, 2008, 20(0708): 1032-1036.
[15] 宋艳,李永红. 介孔分子筛的应用研究新进展[J]. 化学进展, 2007, 19(05): 659-664.