English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 365-382 DOI: 10.7536/PC170815 前一篇   后一篇

• 综述 •

基于席夫碱反应的共价有机骨架材料

张成江1*, 袁晓艳1, 袁泽利1, 钟永科1, 张卓旻2, 李攻科2   

  1. 1. 遵义医学院药学院 遵义 563003;
    2. 中山大学化学学院 广州 510275
  • 收稿日期:2017-08-16 修回日期:2017-11-10 出版日期:2018-04-15 发布日期:2018-02-11
  • 通讯作者: 张成江 E-mail:chemzhangsir@163.com
  • 基金资助:
    国家自然科学基金项目(No.21765027)资助

Covalent Organic Framework Materials Based on Schiff-Base Reaction

Chengjiang Zhang1*, Xiaoyan Yuan1, Zeli Yuan1, Yongke Zhong1, Zhuomin Zhang2, Gongke Li2   

  1. 1. School of Pharmacy, Zunyi Medical University, Zunyi 563003, China;
    2. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2017-08-16 Revised:2017-11-10 Online:2018-04-15 Published:2018-02-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21765027).
席夫碱共价有机骨架材料(Schiff-base COFs)是根据Schiff-base反应原理缩合形成的一类COFs材料。Schiff-base COFs具有骨架密度低、比表面积大、孔径尺寸可控、有机单体种类丰富、合成方法灵活多样、表面化学性质可功能化,易于引入特定的分子识别位点,以及物理化学稳定性优异等特征。Schiff-base COFs在气体吸附/储存、传感、催化、光电材料和前处理介质等诸多领域有重要的应用前景,成为材料科学领域的研究热点。本文主要综述了近年来Schiff-base COFs材料的合成类型、制备方法,以及该材料在不同领域的应用研究进展。最后,总结了该材料的研究现状并展望了该研究领域未来的发展方向和应用前景。
Schiff-base covalent organic frameworks (Schiff-base COFs) are a class of crystalline porous polymers with strong covalent bonds via Schiff-base condensation reaction. The COFs materials possess the advantages of low density, large surface area, tunable pore size and structure, facilely tailored functionality, versatile covalent-combination of building units, diverse synthetic methods, easy of introducing specific molecular recognition sites, excellent physical and chemical stability, and so on. These advantages provide the COFs materials with superior potentials in diverse applications, such as gas storage/adsorption, sensing, catalysis, optoelectronic material, and as enrichment media of sample pretreatment.Currently, Schiff-base COFs have become a research hotspot in the field of materials science.This review mainly describes the state-of-the-art development in the synthesis, preparation and application of Schiff-base COFs materials. In the end, the current statuses of COFs are summarized, and the future trends and application potentials of the COFs materials are also prospected.
Contents
1 Introduction
2 Types of COFs synthesized
2.1 Imine linkage
2.2 Hydrazone linkage
2.3 Azine linkage
2.4 Polyimide linkage
3 Synthetic methods of COFs
3.1 Solvothermal synthesis
3.2 Microwave synthesis
3.3 Mechanochemical grindig synthesis
3.4 Room-temperature synthesis
3.5 Surface synthesis
4 Applications of COFs
4.1 Gas storage/adsorption
4.2 Catalysis
4.3 Sensing
4.4 Optoelectronic material
4.5 Sample pretreatment media
4.6 Chromatographic stationary phases
4.7 Biological medicine
5 Conclusion

中图分类号: 

()
[1] Côté A P, Benin A I, Ockwig N W, ÓKeeffe M, Matzger A J, Yaghi O M. Science, 2005, 310:1166.
[2] Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41:6010.
[3] Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42:548.
[4] Jin Y H, Zhu Y L, Zhang W. Cryst.Eng. Comm., 2013, 15:1484.
[5] Segura J L, Mancheño M J, Zamora F, Chem. Soc. Rev., 2016, 45:5635.
[6] Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, ÓKeeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131:4570.
[7] Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey S K, Liao L, Ambrogio M W, Botros Y Y, Duan X F, Seki S, Fraser Stoddart J, Yaghi O M. Chem. Mater., 2011, 23:4094.
[8] Zhang Y B, Su J, Furukawa H, Yun Y F, Gándara F, Duong A, Zou X D, Yaghi O M. J. Am. Chem. Soc., 2013, 135:16336.
[9] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133:19816.
[10] Chen X, Addicoat M, Irle S, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 13:546.
[11] Jin S B, Sakurai T, Kowalczyk T, Dalapati S, Xu F, Wei H, Chen X, Gao J, Seki S, Irle S, Jiang D L. Chem. Eur. J., 2014, 20:14608.
[12] Chen X, Huang N, Gao J, Xu H, Xu F, Jiang D L. Chem. Commun., 2014, 50:6161.
[13] Dalapati S, Addicoat M, Jin S B, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D L. Nat. Commun., 2015, 6:7786.
[14] Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem. Int. Ed., 2014, 126:2922.
[15] Lin G Q, Ding H M, Yuan D Q, Wang B S, Wang C. J. Am. Chem. Soc., 2016, 138:3302.
[16] Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134:19524.
[17] Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135:17853.
[18] Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136:6570.
[19] DeBlase C R, Silberstein K E, Truong T T, Abruña H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135:16821.
[20] Xu H S, Ding S Y, An W K, Wu H, Wang W. J. Am. Chem. Soc., 2016, 138:11489.
[21] Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013, 52:13052.
[22] Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015, 6:6786.
[23] Chen X, Addicoat M, Jin E Q, Zhai L P, Xu H, Huang N, Guo Z Q, Liu L L, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137:3241.
[24] Song J R, Sun J L, Liu J M, Huang Z T, Zheng Q Y. Chem. Commun., 2014, 50:788.
[25] Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136:15885.
[26] Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F, Zhao X. Chem. Commun., 2016, 52:11704.
[27] Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138:4710.
[28] Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133:11478.
[29] Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5:2789.
[30] Das G, Shinde D B, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50:12615.
[31] Zhang W J, Jiang P P, Wang Y, Zhang J, Gao Y X, Zhang P B. RSC Adv., 2014, 4:51544.
[32] Zhang W J, Jiang P P, Wang Y, Zhang J, Zhang P B. Catal. Sci. Technol., 2015, 5:101.
[33] Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135:17310.
[34] Li Z P, Feng X, Zou Y C, Zhang Y W, Xia H, Liu X M, Mu Y. Chem. Commun., 2014, 50:13825.
[35] Li Z P, Zhi Y F, Feng X, Ding X S, Zou Y C, Liu X M, Mu Y. Chem. Eur. J., 2015, 21:12079.
[36] Alahakoon S B, Thompson C M, Nguyen A X, Occhialini G, McCandless G T, Smaldone R A. Chem. Commun., 2016, 52:2843.
[37] Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5:4503.
[38] Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137:8352.
[39] Wei H, Chai S Z, Hu N T, Yang Z, Wei L M, Wang L. Chem. Commun., 2015, 51:12178.
[40] Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013,135:5328.
[41] Ruigómez A P, Rodríguez-San-Miguel D, Stylianou K C, Cavallini M, Gentili D, Liscio F, Milita S, Roscioni O M, Ruiz-González M L, Carbonell C, Maspoch D, Mas-Ballesté R, Segura J L, Zamora F. Chem. Eur. J., 2015, 21:10666.
[42] Shiraki T, Kim G, Nakashima N. Chem. Lett., 2015, 44:1488.
[43] Xu L R, Zhou X, Yu Y X, Tian W Q, Ma J, Lei S B. ACS Nano, 2013, 9:8066.
[44] Liu X H, Guan C Z, Ding S Y, Wang W, Yan H J, Wang D, Wan L J. J. Am. Chem. Soc., 2013, 135:10470.
[45] Yue J Y, Liu X H, Sun B, Wang D. Chem. Commun., 2015, 51:14318.
[46] Hu Y, Goodeal N, Chen Y, Ganose A M, Palgrave R G, Bronstein H, Blunt M O. Chem. Commun., 2016, 52:9941.
[47] Xu L R, Zhou X, Tian W Q, Gao T, Zhang Y F, Lei S B, Liu Z F. Angew. Chem. Int. Ed., 2014, 53:9564.
[48] DeBlase C R, Hernandez-Burgos K, Silberstein K E, Rodriguez-Calero G G, Bisbey R P, Abruna H D, Dichtel W R. ACS Nano, 2015, 9:3178.
[49] Cai S L, Zhang Y B, Pun A B, He B, Yang J H, Toma F M, Sharp L D, Yaghi O M, Fan J, Zheng S R, Zhang W G, Liu Y. Chem. Sci., 2014, 5:4693.
[50] Kandambeth, Biswal B P, Chaudhari H D, Rout K C, Kunjattu H S, Mitra S, Karak S, Das A, Mukherjee R, Kharul U K, Banerjee R. Adv. Mater., 2017, 29:1603945.
[51] Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R S, El-Kaderi H M. Chem. Eur. J., 2013, 19:3324.
[52] Gao Q, Bai L Y, Zhang X J, Wang P, Li P Z, Zeng Y F, Zou R Q, Zhao Y L. Chin. J. Chem., 2015, 33:90.
[53] Xu L Q, Ding S Y, Liu J M, Sun J L, Wang W, Zheng Q Y. Chem. Commun., 2016, 52:4706.
[54] Xu S Q, Liang R R, Zhan T G, Qi Q Y, Zhao X. Chem. Commun., 2017, 53:2431.
[55] Kaleeswaran D, Vishnoi P, Murugavel R. J. Mater. Chem. C, 2015, 3:7159.
[56] Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 127:3029.
[57] Huang N, Chen X, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137:7079.
[58] Lin S, Hou Y X, Deng X, Wang H L, Sun S Z, Zhang X M. RSC Adv., 2015, 5:41017.
[59] Pachfule P, Panda M K, Kandambeth S, Shivaprasad S M, Díaz D D, Banerjee R. J. Mater. Chem. A, 2014, 2:7944.
[60] Pachfule P, Kandambeth S, Díaz D D, Banerjee R. Chem. Commun., 2014, 50:3169.
[61] Shinde D B, Kandambeth S, Pachfule P, Kumar R R, Banerjee R. Chem. Commun., 2015, 51:310.
[62] Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Eur. J., 2014, 50:1292.
[63] Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7:905.
[64] Wu Y, Xu H, Chen X, Gao J, Jiang D L. Chem. Commun., 2015, 51:10096.
[65] Thote J, Aiyappa H B, Deshpande A, Diaz D D, Kurungot S, Banerjee R. Chem. Eur. J., 2014, 20:15961.
[66] Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem. Sci., 2015, 6:3931.
[67] Xie Y F, Ding S Y, Liu J M, Wang W, Zheng Q Y. J. Mater. Chem. C, 2015, 3:10066.
[68] Wang P Y, Kang M M, Sun S M, Liu Q, Zhang Z H, Fang S M. Chin. J. Chem., 2014, 32:838.
[69] Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016, 138:3031.
[70] Ding H M, Li Y H, Hu H, Sun Y M, Wang J G, Wang C X, Wang C, Zhang G X, Wang B S, Xu W, Zhang D Q. Chem. Eur. J., 2014, 20:14614.
[71] Feldblyum J I, McCreery C H, Andrews S C, Kurosawa T, Santos E J G, Duong V, Fang L, Ayzner A L, Bao Z N. Chem. Commun., 2015, 51:13894.
[72] Wang P Y, Wu Q, Han L F, Wang S, Fang S M, Zhang Z H, Sun S M. RSC Adv., 2015, 5:27290.
[73] Souza-Silva É A, Jiang R F, Lafuente A R, Gionfriddo E, Pawliszyn J. TrAC Trends Anal. Chem., 2015, 71:224.
[74] Souza-Silva É A, Gionfriddo E, Pawliszyn J. TrAC Trends Anal. Chem., 2015, 71:236.
[75] Souza-Silva É A, Garcés N R, Gómez-Ríos G A, Boyaci E, Bojko B, Pawliszyn J. TrAC Trends Anal. Chem., 2015, 71:249.
[76] Wu M X, Chen G, Liu P, Zhou W H, Jia Q. J. Chromatogr. A, 2016, 1456:34.
[77] Wu M X, Chen G, Ma J T, Liu P, Jia Q. Talanta, 2016, 161:350.
[78] Zhang S H, Yang Q, Li Z, Wang W C, Wang C, Wang Z. Anal. Bioanal. Chem., 2017, 409:3429.
[79] Xie L J, Jiang R F, Zhu F, Liu H, Ouyang G F. Anal. Bioanal. Chem., 2014, 406:377.
[80] Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53:2511.
[81] He S J, Zeng T, Wang S H, Niu H Y, Cai Y Q. ACS App. Mater. Interfaces, 2017, 9:2959.
[82] Wang H P, Jiao F L, Gao F Y, Huang J J, Zhao Y, Shen Y H, Zhang Y J, Qian X H. J. Mater. Chem. B, 2017, 5:4052.
[83] Lin G, Gao C H, Zheng Q, Lei Z X, Geng H J, Lin Z A,Yang H H, Cai Z W. Chem. Commun., 2017, 53:3649.
[84] Yang C X, Liu C, Cao Y M, Yan X P. Chem. Commun., 2015, 51:12254.
[85] Qian H L, Yang C X, Yan X P. Nat. Commun., 2016, 7:12104.
[86] Niu X Y, Ding S Y, Wang W F, Xu Y L, Xu Y Y, Chen H L, Chen X G. J. Chromatogr. A, 2016, 1436:109.
[87] Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28:8749.
[88] Lohse M S, Stassin T, Naudin G, Wuttke S, Ameloot R, Vos D D, Medina D D, Bein T. Chem. Mater., 2016, 28:626.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[3] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[4] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[5] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[6] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[7] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[8] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[9] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[10] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[11] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[12] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[13] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[14] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[15] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11): 1722-1733.