English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1882-1895 DOI: 10.7536/PC211206 前一篇   后一篇

• 综述 •

二苯丙氨酸二肽微纳米结构的可控组装及应用

王克青1,2, 薛慧敏1, 秦晨晨1,*(), 崔巍1,*()   

  1. 1 中国科学院化学研究所 北京 100190
    2 中国国家博物馆 北京 100006
  • 收稿日期:2021-12-06 修回日期:2022-02-08 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家自然科学基金项目(21961142022); 国家自然科学基金项目(21872150); 国家自然科学基金项目(22072160)

Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications

Keqing Wang1,2, Huimin Xue1, Chenchen Qin1(), Wei Cui1()   

  1. 1 Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 National Museum of China,Beijing 100006, China
  • Received:2021-12-06 Revised:2022-02-08 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: cuiwei@iccas.ac.cn(Wei Cui);gracecc1989@163.com(Chenchen Qin)
  • Supported by:
    National Natural Science Foundation of China(21961142022); National Natural Science Foundation of China(21872150); National Natural Science Foundation of China(22072160)

近年来,生物组装单元构筑微纳米结构的组装体在生物纳米技术等领域得到了广泛的研究。不同形貌的微纳米组装体可以通过生物分子的自组装这样快速、简便的方法获得。在众多肽基构筑基元中,二苯丙氨酸二肽及其衍生物作为一种生物活性的肽,具有生物兼容性好、容易化学修饰/生物功能化、制备简单等特点,是构筑微纳米结构材料时重要的生物基元之一。通过可控的方法组装,可以得到基于二苯丙氨酸及其衍生物的不同结构的组装体,他们在光学、机械工程、电化学传感检测等方面也具有广阔的应用前景。研究证明通过改变组装条件以及引入外源小分子等方法可以实现调控短肽的分子组装。本文综述了二苯丙氨酸二肽微纳米组装体的可控组装及他们在生物医学、生物传感、光电材料、光波导和催化等方面的应用。

In recent years, the construction of micro/nano structure assemblies by biological assembly units has been extensively studied in the fields of bio-nanotechnology and other fields. Micro/nano structure assemblies with different morphologies can be obtained by a quick and simple method such as the self-assembly of biomolecules. Diphenylalanine dipeptide and its derivatives, as a biologically active peptide in many peptide-based building blocks, have good biocompatibility and characteristic for chemical modification, biological function and simple preparation. Micro/nano-materials with different structures based on diphenylalanine and its derivatives can be obtained by controllable assembled methods. They also have wide applications in optics, mechanical engineering, electrochemical sensing and detection areas, etc. Controlled assembly of short peptides and its derivatives can be achieved by changing the assembly conditions or introducing of exogenous small molecules. This review summaries and outlooks the controllable assembly of diphenylalanine dipeptide micro/nano structure assemblies and their applications in biomedicine, biosensor, optoelectronic materials, optical waveguides and catalysis.

Contents

1 Introduction

2 Controllable assembly of dipeptide-based assemblies

2.1 Physical factors

2.2 Chemical factors

2.3 Biological factors

3 Application of dipeptide-based assemblies

3.1 Biomedicine

3.2 Biosensors

3.3 Optoelectronic materials

3.4 Optical waveguide

3.5 Catalysis

4 Conclusion and outlook

()
图1 手性Ferrocene-L-Phe-L-Phe-OH (Fc-FF)组装成手性纳米结构的示意图[36]
Fig. 1 Chiral self-assembly of Ferrocene-L-Phe-L-Phe-OH (Fc-FF) into rationally designed chiral nanostructures[36]
图2 光调控的二肽超分子凝胶-溶胶可逆转变[40]
Fig. 2 Representation of light-controlled reversible gel-sol transition of non-photosensitive diphenylalanine supramolecular assembly[40]
图3 金属离子诱导的Fmoc-FF组装体从β-折叠到超螺旋和无规卷曲的结构转变示意图[15]
Fig. 3 Schematic illustration of the metal ion modulated structural transformation of amyloid-derived self-assembled Fmoc-FF from the β-sheet into the superhelix and random coil[15]
图4 (a) Fmoc-FF形成的水凝胶的宏观和微观表征;(b) Ulijn等[60]提出的自组装水凝胶中Fmoc-FF 的分子排列模型
Fig. 4 (a) Macroscopic and microscopic characterization of gel formed by Fmoc-FF hydrogelator; (b) Packing model of Fmoc-FF dipeptides in self-assembled hydrogels as proposed by Ulijn et al.[60]
图5 气凝胶和冰凝胶分别作为止血材料和防水材料用于体外创伤治疗[77]
Fig. 5 Use of FF aerogels as hemostasis materials and cryogels as waterproof materials for wound care[77]
图6 制备CDP-AuNP杂化微球及ChOx/CDP-AuNP/CS/PB修饰电极示意图[88]
Fig. 6 Schematic process of assembling CDP-AuNP hybrid microspheres and fabrication of ChOx/CDP-AuNP/CS/PB biosensor electrodes[88]
图7 纳米管压电材料的制备[90]
Fig. 7 Preparation of FF nanotube piezoelectric materials[90]
图8 (a) CDP和京尼平的结构及不同溶剂调控下CDPG的组装;(b) 纳米球和纳米纤维修饰的光阳极的光电流测试[94]
Fig. 8 (a) Chemical structures of CDP and genipin and solvent-modulated assembly of CDPG; (b) schematic of the photocurrent measurements with the photoanodes based on nanospheres and nanofibers[94]
图9 (a~c) 罗丹明B掺杂的二苯丙氨酸(FF)枝化结构激光共聚焦图像及(d)明场图像; FF-RhB枝化结构的(e~g)光波导照片和(h)明场照片,标尺为 20 μm[98]
Fig. 9 (a~c) CLSM images and (d) bright-field image of rhodamine B doped diphenylalanine branched structure. (e, f) Photoluminescence images of rhodamine B-doped diphenylalanine branched structures excited at the rod position. (g) Photoluminescence image and (h) bright-field image of rhodamine B-doped diphenylalanine branched structures excited at the tips of the branches. All the scale bars represent 20 μm[98]
图10 (A) 天然漆酶的结构式以及(B) 二肽基超分子装配体在Cu2+和H+的调控下可逆转化及催化过程的示意图[33]
Fig.10 (A) Highlighted crystal structure of fungus laccase from Trametes versicolor (PDB: 1GYC). (B) Chemical structure of CDPGA, schematic illustration of reversible transformation of nanospheres to nanochains modulating by Cu2+ and H+, and switchable enzyme-like catalytic oxidation of hydroquinone to benzoquinone[33]
[1]
Goor O J G M, Hendrikse S I S, Dankers P Y W, Meijer E W. Chem. Soc. Rev., 2017, 46(21): 6621.

doi: 10.1039/C7CS00564D     URL    
[2]
Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2016, 45(14): 3935.

doi: 10.1039/C5CS00889A     URL    
[3]
Makam P, Gazit E. Chem. Soc. Rev., 2018, 47(10): 3406.

doi: 10.1039/C7CS00827A     URL    
[4]
Wei G, Su Z Q, Reynolds N P, Arosio P, Hamley I W, Gazit E, Mezzenga R. Chem. Soc. Rev., 2017, 46(15): 4661.

doi: 10.1039/C6CS00542J     URL    
[5]
Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E. J. Am. Chem. Soc., 2005, 127(34): 11892.

doi: 10.1021/ja052522q     URL    
[6]
Lingenfelder M, Tomba G, Costantini G, Colombi Ciacchi L, De Vita A, Kern K. Angew. Chem., 2007, 119(24): 4576.

doi: 10.1002/ange.200700194     URL    
[7]
Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2014, 43(20): 6881.

doi: 10.1039/c4cs00164h     pmid: 25099656
[8]
Tao K, Yoskovitz E, Adler-Abramovich L, Gazit E. RSC Adv., 2015, 5(90): 73914.

doi: 10.1039/C5RA16412E     URL    
[9]
Wu A L, Guo Y X, Li X B, Xue H M, Fei J B, Li J B. Angew. Chem. Int. Ed., 2021, 60(4): 2099.

doi: 10.1002/anie.202012470     URL    
[10]
Wang J B, Chao J, Liu H J, Su S, Wang L H, Huang W, Willner I, Fan C H. Angew. Chem. Int. Ed., 2017, 56(8): 2171.

doi: 10.1002/anie.201610125     URL    
[11]
Elsawy M A, Smith A M, Hodson N, Squires A, Miller A F, Saiani A. Langmuir, 2016, 32(19): 4917.

doi: 10.1021/acs.langmuir.5b03841     URL    
[12]
Wei G, Reichert J, Jandt K D. Chem. Commun., 2008(33): 3903.
[13]
Dave A C, Loveday S M, Anema S G, Jameson G B, Singh H. Biomacromolecules, 2014, 15(1): 95.

doi: 10.1021/bm401315s     URL    
[14]
Wei G, Reichert J, Bossert J, Jandt K D. Biomacromolecules, 2008, 9(11): 3258.

doi: 10.1021/bm800824r     URL    
[15]
Ji W, Yuan C Q, Zilberzwige-Tal S, Xing R R, Chakraborty P, Tao K, Gilead S, Yan X H, Gazit E. ACS Nano, 2019, 13(6): 7300.

doi: 10.1021/acsnano.9b03444     URL    
[16]
Scanlon S, Aggeli A. Nano Today, 2008, 3(3/4): 22.

doi: 10.1016/S1748-0132(08)70041-0     URL    
[17]
Yang Y L, Ulung K, Wang X M, Horii A, Yokoi H, Zhang S G. Nano Today, 2009, 4(2): 193.

doi: 10.1016/j.nantod.2009.02.009     URL    
[18]
Baker P A, Goltz M N, Schrand A M, Yoon D Y, Kim D S. Biosens. Bioelectron., 2014, 61: 119.

doi: 10.1016/j.bios.2014.04.010     URL    
[19]
Hamley I W. Angew. Chem. Int. Ed., 2014, 53(27): 6866.

doi: 10.1002/anie.201310006     pmid: 24920517
[20]
Lian M L, Chen X, Liu X J, Yi Z C, Yang W S. Sens. Actuat. B Chem., 2017, 251: 86.

doi: 10.1016/j.snb.2017.04.102     URL    
[21]
Gao X, Matsui H. Adv. Mater., 2005, 17(17): 2037.

doi: 10.1002/adma.200401849     URL    
[22]
Wang J H, Ouyang Z F, Ren Z W, Li J F, Zhang P P, Wei G, Su Z Q. Carbon, 2015, 89: 20.

doi: 10.1016/j.carbon.2015.03.024     URL    
[23]
Kim W, ThÉvenot J, Ibarboure E, Lecommandoux S, Chaikof E. Angew. Chem. Int. Ed., 2010, 49(25): 4257.

doi: 10.1002/anie.201001356     URL    
[24]
Zou Q L, Abbas M, Zhao L Y, Li S K, Shen G Z, Yan X H. J. Am. Chem. Soc., 2017, 139(5): 1921.

doi: 10.1021/jacs.6b11382     URL    
[25]
Zhang Q, Li M X, Zhu C Y, Nurumbetov G, Li Z D, Wilson P, Kempe K, Haddleton D M. J. Am. Chem. Soc., 2015, 137(29): 9344.

doi: 10.1021/jacs.5b04139     URL    
[26]
Yang L L, Liu A J, Cao S Q, Putri R M, Jonkheijm P, Cornelissen J J L M. Chem. Eur. J., 2016, 22(44): 15570.

doi: 10.1002/chem.201601943     URL    
[27]
Zhang S G. Nat. Biotechnol., 2003, 21(10): 1171.

doi: 10.1038/nbt874     URL    
[28]
Hauser C A E, Zhang S G. Nature, 2010, 468(7323): 516.

doi: 10.1038/468516a     URL    
[29]
Sun B B, Li Q, Riegler H, Eickelmann S, Dai L R, Yang Y, Perez-Garcia R, Jia Y, Chen G X, Fei J B, Holmberg K, Li J B. ACS Nano, 2017, 11(10): 10489.

doi: 10.1021/acsnano.7b05800     URL    
[30]
Puiu M, Bala C. Bioelectrochemistry, 2018, 120: 66.

doi: 10.1016/j.bioelechem.2017.11.009     URL    
[31]
Xue H M, Fei J B, Wu A L, Xu X, Li J B. CCS Chem., 2021, 3(11): 8.

doi: 10.31635/ccschem.021.202000601     URL    
[32]
Sun B B, Tao K, Jia Y, Yan X H, Zou Q L, Gazit E, Li J B. Chem. Soc. Rev., 2019, 48(16): 4387.

doi: 10.1039/C9CS00085B     URL    
[33]
Wang C L, Fei J B, Wang K Q, Li J B. Angew. Chem. Int. Ed., 2020, 59(43): 18960.

doi: 10.1002/anie.202006994     URL    
[34]
Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Nat. Nanotechnol., 2009, 4(12): 849.

doi: 10.1038/nnano.2009.298     pmid: 19893524
[35]
Liu X C, Fei J B, Wang A H, Cui W, Zhu P L, Li J B. Angew. Chem. Int. Ed., 2017, 56(10): 2660.

doi: 10.1002/anie.201612024     URL    
[36]
Wang Y F, Qi W, Huang R L, Yang X J, Wang M F, Su R X, He Z M. J. Am. Chem. Soc., 2015, 137(24): 7869.

doi: 10.1021/jacs.5b03925     URL    
[37]
Ma H C, Fei J B, Li Q, Li J B. Small, 2015, 11(15): 1787.

doi: 10.1002/smll.201402140     URL    
[38]
Yao X Y, Li T, Wang J, Ma X, Tian H. Adv. Opt. Mater., 2016, 4(9): 1322.

doi: 10.1002/adom.201600281     URL    
[39]
Russew M M, Hecht S. Adv. Mater., 2010, 22(31): 3348.

doi: 10.1002/adma.200904102     URL    
[40]
Li X B, Fei J B, Xu Y Q, Li D X, Yuan T T, Li G L, Wang C L, Li J B. Angew. Chem. Int. Ed., 2018, 57(7): 1903.

doi: 10.1002/anie.201711547     URL    
[41]
Zhao Y S, Yang W S, Yao J N. Phys. Chem. Chem. Phys., 2006, 8(28): 3300.

doi: 10.1039/b604645m     URL    
[42]
Wang H Q, Yan X H, Li G L, Pilz-Allen C, Möhwald H, Shchukin D. Adv. Healthcare Mater., 2014, 3(6): 825.

doi: 10.1002/adhm.201300596     URL    
[43]
Skorb E V, Möhwald H, Irrgang T, Fery A, Andreeva D V. Chem. Commun., 2010, 46(42): 7897.

doi: 10.1039/c0cc00965b     URL    
[44]
Eddleston M D, Jones W. Cryst. Growth Des., 2010, 10(1): 365.

doi: 10.1021/cg900969n     URL    
[45]
Li Q, Jia Y, Dai L R, Yang Y, Li J B. ACS Nano, 2015, 9(3): 2689.

doi: 10.1021/acsnano.5b00623     URL    
[46]
Li Q, Ma H C, Jia Y, Li J B, Zhu B H. Chem. Commun., 2015, 51(33): 7219.

doi: 10.1039/C5CC01554E     URL    
[47]
Na N, Mu X Y, Liu Q L, Wen J Y, Wang F F, Ouyang J. Chem. Commun., 2013, 49(86): 10076.

doi: 10.1039/c3cc45320k     URL    
[48]
Zou Q L, Zhang L, Yan X H, Wang A H, Ma G H, Li J B, Möhwald H, Mann S. Angew. Chem. Int. Ed., 2014, 53(9): 2366.

doi: 10.1002/anie.201308792     URL    
[49]
Ma H C, Fei J B, Cui Y, Zhao J, Wang A H, Li J B. Chem. Commun., 2013, 49(85): 9956.

doi: 10.1039/c3cc45514a     URL    
[50]
Yan X H, Zhu P L, Fei J B, Li J B. Adv. Mater., 2010, 22(11): 1283.

doi: 10.1002/adma.200901889     URL    
[51]
Liu X C, Fei J B, Zhu P L, Li J B. Chem. Asian J., 2016, 11(19): 2700.

doi: 10.1002/asia.201600500     URL    
[52]
Yuan T T, Fei J B, Xu Y Q, Yang X K, Li J B. Macromol. Rapid Commun., 2017, 38(20): 1700408.

doi: 10.1002/marc.201700408     URL    
[53]
Zhang H, Fei J B, Yan X H, Wang A H, Li J B. Adv. Funct. Mater., 2015, 25(8): 1193.

doi: 10.1002/adfm.201403119     URL    
[54]
Miller Y, Ma B Y, Nussinov R. Coord. Chem. Rev., 2012, 256(19/20): 2245.

doi: 10.1016/j.ccr.2011.12.022     URL    
[55]
Kim J, Han T H, Kim Y I, Park J S, Choi J, Churchill D G, Kim S O, Ihee H. Adv. Mater., 2010, 22(5): 583.

doi: 10.1002/adma.200901973    
[56]
Han T H, Kim J, Park J S, Park C B, Ihee H, Kim S O. Adv. Mater., 2007, 19(22): 3924.

doi: 10.1002/adma.2007001839     URL    
[57]
Wang J, Liu K, Yan L Y, Wang A H, Bai S, Yan X H. ACS Nano, 2016, 10(2): 2138.

doi: 10.1021/acsnano.5b06567     URL    
[58]
Zhang G, Zhang L W, Rao H J, Wang Y F, Li Q, Qi W, Yang X J, Su R X, He Z M. J. Colloid Interface Sci., 2020, 577: 388.

doi: 10.1016/j.jcis.2020.05.087     URL    
[59]
Zhu P L, Yan X H, Su Y, Yang Y, Li J B. Chem. Eur. J., 2010, 16(10): 3176.

doi: 10.1002/chem.200902139     URL    
[60]
Jayawarna V, Ali M, Jowitt T A, Miller A F, Saiani A, Gough J E, Ulijn R V. Adv. Mater., 2006, 18(5): 611.

doi: 10.1002/adma.200501522     URL    
[61]
Kumaraswamy P, Lakshmanan R, Sethuraman S, Krishnan U M. Soft Matter, 2011, 7(6): 2744.

doi: 10.1039/C0SM00897D     URL    
[62]
Tang C, Smith A M, Collins R F, Ulijn R V, Saiani A. Langmuir, 2009, 25(16): 9447.

doi: 10.1021/la900653q     URL    
[63]
McAulay K, Ucha P A, Wang H, Fuentes-CaparrÓs A M, Thomson L, Maklad O, Khunti N, Cowieson N, Wallace M, Cui H G, Poole R J, Seddon A, Adams D J. Chem. Commun., 2020, 56(29): 4094.

doi: 10.1039/D0CC01252A     URL    
[64]
Hughes M, Xu H X, Frederix P W J M, Smith A M, Hunt N T, Tuttle T, Kinloch I A, Ulijn R V. Soft Matter, 2011, 7(21): 10032.

doi: 10.1039/c1sm05981e     URL    
[65]
Chronopoulou L, Lorenzoni S, Masci G, Dentini M, Togna A R, Togna G, Bordi F, Palocci C. Soft Matter, 2010, 6(11): 2525.

doi: 10.1039/c001658f     URL    
[66]
Zhao J, Huang R L, Qi W, Wang Y F, Su R X, He Z M. Progress in Chemistry, 2014, 26(9): 1445.
( 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 化学进展, 2014, 26(9): 1445.).
[67]
Williams R J, Smith A M, Collins R, Hodson N, Das A K, Ulijn R V. Nat. Nanotechnol., 2009, 4(1): 19.

doi: 10.1038/nnano.2008.378     pmid: 19119277
[68]
Yang Z, Xu B. Adv. Mater., 2006, 18(22): 3043.

doi: 10.1002/adma.200600400     URL    
[69]
Yang Z M, Liang G L, Wang L, Xu B. J. Am. Chem. Soc., 2006, 128(9): 3038.

doi: 10.1021/ja057412y     URL    
[70]
Li J Y, Gao Y, Kuang Y, Shi J F, Du X W, Zhou J, Wang H M, Yang Z M, Xu B. J. Am. Chem. Soc., 2013, 135(26): 9907.

doi: 10.1021/ja404215g     URL    
[71]
Toledano S, Williams R J, Jayawarna V, Ulijn R V. J. Am. Chem. Soc., 2006, 128(4): 1070.

pmid: 16433511
[72]
Das A K, Collins R, Ulijn R V. Small, 2008, 4(2): 279.

doi: 10.1002/smll.200700889     URL    
[73]
Xing R R, Zou Q L, Yan X H. Acta Phys. Chim. Sin., 2020, 36(10): 1909048.
( 邢蕊蕊, 邹千里, 闫学海. 物理化学学报, 2020, 36(10): 1909048.).
[74]
Yan X H, Zhu P L, Li J B. Chem. Soc. Rev., 2010, 39(6): 1877.

doi: 10.1039/b915765b     URL    
[75]
Fei J B, Li Q, Zhao J, Li J B. Progress in Chemistry, 2019, 31(1): 30.
( 费进波, 李琦, 赵洁, 李峻柏. 化学进展, 2019, 31(1): 30.).

doi: 10.7536/PC181209    
[76]
Jia Y, Li Q, Li J B. Chin. Sci. Bull., 2017, 62(6): 469.

doi: 10.1360/N972016-00424     URL    
( 贾怡, 李琦, 李峻柏. 科学通报, 2017, 62(6): 469.).
[77]
Li X B, Li Q, Fei J B, Jia Y, Xue H M, Zhao J, Li J B. Angew. Chem. Int. Ed., 2020, 59(29): 11932.

doi: 10.1002/anie.202005575     URL    
[78]
Ma K, Xing R R, Jiao T F, Shen G Z, Chen C J, Li J B, Yan X H. ACS Appl. Mater. Interfaces, 2016, 8(45): 30759.

doi: 10.1021/acsami.6b10754     URL    
[79]
Sun B B, Chang R, Cao S P, Yuan C Q, Zhao L Y, Yang H W, Li J B, Yan X H, Hest J C M. Angew. Chem. Int. Ed., 2020, 59(46): 20582.

doi: 10.1002/anie.202008708     URL    
[80]
Yemini M, Reches M, Rishpon J, Gazit E. Nano Lett., 2005, 5(1): 183.

pmid: 15792436
[81]
Yemini M, Reches M, Gazit E, Rishpon J. Anal. Chem., 2005, 77(16): 5155.

pmid: 16097753
[82]
Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J. Small, 2010, 6(7): 825.

doi: 10.1002/smll.200902186     pmid: 20205204
[83]
Huang Y, Tan J, Cui L J, Zhou Z D, Zhou S F, Zhang Z H, Zheng R, Xue Y W, Zhang M X, Li S S, Zhu N X, Liang J T, Li G Y, Zhong L P, Zhao Y X. Biosens. Bioelectron., 2018, 102: 560.

doi: S0956-5663(17)30766-2     pmid: 29220804
[84]
Gong Y F, Chen X, Lu Y L, Yang W S. Biosens. Bioelectron., 2015, 66: 392.

doi: 10.1016/j.bios.2014.11.029     URL    
[85]
Sasso L, Vedarethinam I, EmnÉus J, Svendsen W E, Castillo-LeÓon J. J. Nanosci. Nanotech., 2012, 12(4): 3077.

doi: 10.1166/jnn.2012.4534     URL    
[86]
Castillo J J, Svendsen W E, Rozlosnik N, Escobar P, Martínez F, Castillo-LeÓn J. Analyst, 2013, 138(4): 1026.

doi: 10.1039/c2an36121c     pmid: 23150875
[87]
Huang S M, Chen G S, Ou R H, Qin S, Wang F X, Zhu F, Ouyang G F. Anal. Chem., 2018, 90(14): 8607.

doi: 10.1021/acs.analchem.8b01855     URL    
[88]
Wang K Q, Li Z R, Wang C L, Zhang S, Cui W, Xu Y Q, Zhao J, Xue H M, Li J B. J. Colloid Interface Sci., 2019, 557: 628.

doi: 10.1016/j.jcis.2019.09.033     URL    
[89]
Si Y C, Samulski E T. Nano Lett., 2008, 8(6): 1679.

doi: 10.1021/nl080604h     URL    
[90]
Lee J H, Heo K, Schulz-Schönhagen K, Lee J H, Desai M S, Jin H E, Lee S W. ACS Nano, 2018, 12(8): 8138.

doi: 10.1021/acsnano.8b03118     URL    
[91]
Nguyen V, Zhu R, Jenkins K, Yang R S. Nat. Commun., 2016, 7: 13566.

doi: 10.1038/ncomms13566     pmid: 27857133
[92]
Park I W, Choi J, Kim K Y, Jeong J, Gwak D, Lee Y H, Ahn Y H, Choi Y J, Hong Y J, Chung W J, Lee M, Heo K. Nano Energy, 2019, 57: 737.

doi: 10.1016/j.nanoen.2019.01.008    
[93]
Ryu J, Kim S W, Kang K, Park C B. ACS Nano, 2010, 4(1): 159.

doi: 10.1021/nn901156w     URL    
[94]
Xue H M, Li X B, Wang K Q, Cui W, Zhao J, Fei J B, Li J B. Chem. Commun., 2019, 55(87): 13136.

doi: 10.1039/C9CC07520H     URL    
[95]
Sun B B, Riegler H, Dai L R, Eickelmann S, Li Y, Li G L, Yang Y, Li Q, Fu M F, Fei J B, Li J B. ACS Nano, 2018, 12(2): 1934.

doi: 10.1021/acsnano.7b08925     URL    
[96]
Li Q, Ma H C, Wang A H, Jia Y, Dai L R, Li J B. Adv. Opt. Mater., 2015, 3(2): 194.

doi: 10.1002/adom.201400308     URL    
[97]
Yan X H, Li J B, Möhwald H. Adv. Mater., 2011, 23(25): 2796.

doi: 10.1002/adma.201100353     URL    
[98]
Li Q, Jia Y, Yang X K, Dai L R, Das B, Acharya S, Sun B B, Yang Y, Liu X C, Ariga K, Li J B. ACS Appl. Mater. Interfaces, 2019, 11(1): 31.

doi: 10.1021/acsami.8b18106     URL    
[99]
Wang L, Shen G Z, Yan X H. Particuology, 2022, 64: 14.

doi: 10.1016/j.partic.2021.05.007     URL    
[100]
Dong J Q, Liu Y, Cui Y. J. Am. Chem. Soc., 2021, 143(42): 17316.

doi: 10.1021/jacs.1c08487     URL    
[101]
Han J J, Gong H N, Ren X K, Yan X H. Nano Today, 2021, 41: 101295.

doi: 10.1016/j.nantod.2021.101295     URL    
[102]
Chen Y, Yang Y Q, Orr A A, Makam P, Redko B, Haimov E, Wang Y N, Shimon L J W, Rencus-Lazar S, Ju M T, Tamamis P, Dong H, Gazit E. Angew. Chem. Int. Ed., 2021, 60(31): 17164.

doi: 10.1002/anie.202105830     pmid: 34014019
[103]
Li L C, Xie L, Zheng R L, Sun R Q. Front. Chem., 2021, 9: 739791.

doi: 10.3389/fchem.2021.739791     URL    
[104]
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn R V. Chem. Rev., 2021, 121(22): 13869.

doi: 10.1021/acs.chemrev.1c00089     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[4] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[5] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[6] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[7] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[8] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[9] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[10] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[11] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[12] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[13] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[14] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[15] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.