English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2035-2050 DOI: 10.7536/PC211110 前一篇   后一篇

• 综述 •

生物酶驱动的微纳米马达在生物医学领域的应用

张荡, 王曦, 王磊*()   

  1. 哈尔滨工业大学化工与化学学院 新能源转换与储存关键材料技术工业和信息化部重点实验室 哈尔滨 150001
  • 收稿日期:2021-11-10 修回日期:2021-12-01 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家自然科学基金项目(52073071); 国家自然科学基金项目(51703043); 国家重点研发计划(2021YFF0603500); 国家博士后项目(2020T130144); 国家博士后项目(2016M600247); 黑龙江省自然科学基金项目(YQ2022E021)

Biomedical Applications of Enzyme-Powered Micro/Nanomotors

Dang Zhang, Xi Wang, Lei Wang()   

  1. School of Chemistry and Chemical Engineering, Key Laboratory of New Energy Conversion and Storage Key Material of Ministry of Industry and Information Technology, Harbin Institute of Technology,Harbin 150001, China
  • Received:2021-11-10 Revised:2021-12-01 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: leiwang_chem@hit.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(52073071); National Natural Science Foundation of China(51703043); National Key R&D Program of China(2021YFF0603500); National Postdoctoral Program(2020T130144); National Postdoctoral Program(2016M600247); Natural Science Foundation of Heilongjiang Province(YQ2022E021)

生物酶驱动微纳米马达是指利用天然酶催化分解过氧化氢、葡萄糖、尿素和甘油酯等燃料来提供动力的一种新型微纳米机器。生物酶驱动的微纳米马达具有良好的生物相容性,能够在原位利用生物燃料实现自主靶向运动,无需外加原料,这使得生物酶驱动的微纳米马达在生物医学领域展现出巨大的发展潜力与前景。目前,生物酶驱动的微纳米马达在生物医学领域的应用得到众多科学家的关注,但是时至今日,还没有一篇及时、全面、着重地讨论生物酶驱动微纳米马达在生物医学领域应用的综述文章。基于本课题组的研究经验以及目前该领域的发展情况,本文着重讨论不同种类生物酶驱动微纳米马达在疾病诊疗等生物医学领域应用的最新进展,包括生物标志物的检测与诊断、成像显像剂、癌症和其他疾病的治疗等。最后,本文对该领域的发展与未来研究方向提出展望,为实现以“面向世界科技前沿、面向人民生命健康”为目标的“人类卫生健康共同体”提供新的思路和方向。

Enzyme-powered micro/nanomotor is a new type of micro/nanomachines that uses natural enzymes to catalyze the decomposition of fuels such as hydrogen peroxide, glucose, urea, and glycerides to provide power, which mainly includes hydrogen peroxidase, urease, glucose oxidase, and lipase-powered nanomotors. Compared with traditional micro/nanomotors, enzyme powered micro/nanomotors have good biocompatibility, and can achieve autonomous targeting motion in situ using biofuel without additional fuels, which endows enzyme-driven micro/nanomotors with great potential and prospects for in vivo applications, especially in biomedical fields. Currently, the application of enzyme-driven micro/nanomotors in biomedical fields has attracted the attention of many researchers. However, there is no review timely and concisely summarizing the progress in this research aspect. Therefore, based on our experience, this paper focuses on the recent progress of different types of enzyme-powered micro/nanomotors in cancer diagnosis and treatment, and briefly introduces the application of triglyceride degradation and bacterial infection. Finally, this paper provides an outlook on the development and future research in this field, and hopes to stimulate new ideas for building a "human health community" with the goal of "towards the science and technology frontiers worldwide, as well as peoples’ life and health".

Contents

1 Introduction

2 Application of enzyme-driven micro/nanomotors in disease detection and diagnosis

2.1 Bioimaging agents

2.2 Molecular marker detection

3 Applications of enzyme-driven micro/nanomotors in disease treatment

3.1 Cancer treatment

3.2 Treatment of other diseases

4 Conclusions and outlook

()
图1 注入LMs后小鼠膀胱的US和PA图像[31]
Fig. 1 US and PA images of a mouse bladder after LMs injection, Copyright © 2021, American Chemical Society, reproduced with permission Ref.[31]
图2 用于DNA分子检测的各种微纳米马达[38⇓⇓~41]
Fig. 2 Micro/nanomotors for DNA molecular detection[38⇓⇓~41]. (A) Copyright © 2019 American Chemical Society. (B) Copyright © The Royal Society of Chemistry 2017. (C) Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (D) Copyright © 2016 Elsevier
图3 多功能Janus粒子快速检测PCT示意图[44]:(A)多功能Janus粒子检测PCT的机理;(B)快速检测降钙素原的可视化策略
Fig. 3 Scheme of rapid detection of PCT by multifunction Janus particle[44]: (A)Mechanism of detection of PCT by multifunctional Janus particle. (B)Visual strategy for rapid detection of procalcitonin. Copyright © 2019 Elsevier[44]
图4 捕获CTC的JMs示意图[47] :(A) JMs 捕获CTC机理。(B) 捕获 HepG2 细胞后 JM-2 的 SEM 图像。(C) JMs定量检测HepG2细胞
Fig. 4 Scheme of JMs after capture of CTC[47] : (A) Mechanism for JMs to capture CTC. (B) SEM image of JM-2 after capture of HepG2 cells. (C) Quantitative detection of HepG2 cells by JMs, Copyright © 2019 Elsevier
表1 生物酶驱动微纳米马达在疾病诊断中的代表示例
Table 1 Summary of the representative examples in the diagnosis based on enzyme-powered micro/nanomotors
图5 过氧化氢酶驱动马达的药物释放示意图[59,61⇓~63]
Fig. 5 Drug release mechanism of the micro/nanomotors powered by catalase[59,61⇓~63]. Ref 59 Copyright © 2019 American Chemical Society; Ref 61,62 Copyright © 2014 American Chemical Society; Ref 63 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图6 尿素酶驱动的纳米马达用于药物释放和肿瘤破碎[71,72]
Fig. 6 Urease-powered nanomotors used for drug delivery and tumor therapy[71,72].Ref 71 Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Ref 72 Copyright © 2018 American Chemical Society
图7 尿素酶驱动的纳米马达增强膀胱内药物渗透和滞留的示意图[74]
Fig. 7 Schematic illustration of urease-driven nanomotor enhancing drug penetration and retention in bladder[74]. Copyright © 2020 American Chemical Society
图8 小鼠静脉注射18F-标记的尿素酶-AuNP纳米马达[76]
Fig. 8 Mice intravenously injected with18F labeled urease AuNP nanomotor[76],Copyright ©2021 American Association for the Advancement of Science
图9 微纳米马达选择性结合细胞受体的示意图[87]
Fig. 9 Schematic representation of the proposed method for selectively binding cell receptors[87].Copyright © 2017 The Royal Society of Chemistry
图10 UTZCG 纳米马达制造和协同光动力饥饿疗法的过程[92]
Fig. 10 Fabrication of UTZCG nanomotors and collaborative photodynamic starvation therapy via self-accelerating cascade reactions[92].Copyright@© 2019 Elsevier
图11 脂肪酶驱动微纳米马达的制备、运动能力及三丁酸甘油酯液滴的动态降解过程[95]
Fig. 11 Preparation and motility of lipase driven micro/nanomotor and dynamic degradation process of triglyceride droplets[95]. Copyright © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图12 (A)尿素酶驱动微纳米马达的示意图、(B)口服递送微纳米马达在胃中的增强渗透和滞留及(C)染色组织学分析[101]
Fig. 12 (A) Schematic diagram of urease-driven micro/nanomotors, (B) enhanced infiltration and retention of oral delivery micro/nanomotors in the stomach and (C) histological analysis of staining[101].Copyright@© 2021 Elsevier
表2 利用生物酶驱动的微纳米马达治疗各种疾病的代表示例
Table 2 Summary of representative examples for disease treatment using enzyme-powered micro/nanomotors
Types of EMNMs Materials Fuel Velocity and medium Application ref
Catalase Ti/Au-Thiol H2O2 10 body lengths s-1(1.5 wt%) 55
Polydimethyl sulfoxane H2O2 5.2 body lengths s-1(4%) 56
PEG-PS H2O2 117 body lengths s-1 Drug delivery 59
Mesoporous SiO2 H2O2 3.75 μm2/s(6 wt%) Drug delivery 9
Polymer based bottlebrush H2O2 23.6 μm/s (10 mmol·L-1 H2O2 ) Overcoming tissue
Penetration barrier
60
Bovine serum Albumin/poly-L-lysine (PLL/BSA) multilayer H2O2 68 μm/s (0.5% H2O2) Drug delivery 61
Polymers/Au H2O2 108 μm/s (1% H2O2) Drug delivery 62
MOF H2O2 Drug delivery 63
Urease Tubular SiO2 Urea 66
Mesoporous SiO2 Urea 5 body lengths·s-1
(25 mmol·L-1)
Drug delivery 67
Mesoporous SiO2 Urea 6.24 μm2·s-1
(10 mmol·L-1)
Drug delivery 69
Mesoporous SiO2 Urea Drug delivery 70
Mesoporous SiO2/ MSNP-Ur/PEG-Ab Urea Cancer therapy 71
Mesoporous SiO2 Urea 1.36±0.05 μm2/s
300 mmol·L-1 urea PBS
Drug delivery 72
PDA/SiO2 Urea 10.67 μm/s
(100 mmol·L-1)
Drug delivery 73
Platelet Urea Drug delivery 74
Protein Urea 2.7±0.2 μm·s-1
100 mmol·L-1 urea PBS
75
SiO2 Urea Drug delivery 76
GOx SiO2 Glucose 81
GOx+Cat SiO2/PDA
PLL-g-PEG
Glucose Drug delivery 82
GOx+Cat Polymer vesicle Glucose 176 body lengths·s-1(100 mM) Drug delivery 83
GOx+trypsin Pt/ MF-NPs Glucose Targeted transportation 84
GOx CNF Glucose 85
GOx Au/polymer Glucose 120 body lengths ·s-1 Targeted transportation 86
GOx Nanoparticles Glucose Drug delivery 87
GOx+Cat Polymer vesicle Glucose Drug delivery 88
Lipase SiO2 Triglycerides Biodegradation 95
Lipase SiO2 Triglycerides Biodegradation 96
Lipase SiO2 Triglycerides Biodegradation 97
Lipase PGMA/PS Triglycerides Biodegradation 98
[1]
Wang J Z, Xiong Z, Zheng J, Zhan X J, Tang J Y. Acc. Chem. Res., 2018, 51(9): 1957.

doi: 10.1021/acs.accounts.8b00254     URL    
[2]
Feldmann D, Arya P, Lomadze N, Kopyshev A, Santer S. Appl. Phys. Lett., 2019, 115(26): 263701.

doi: 10.1063/1.5129238     URL    
[3]
Leal-Estrada M, Valdez-Garduño M, Soto F, Garcia-Gradilla V. Curr. Robotics Rep., 2021, 2(1): 21.
[4]
Xu T L, Xu L P, Zhang X J. Appl. Mater. Today, 2017, 9: 493.
[5]
Zhou H J, Mayorga-Martinez C C, PanÉ S, Zhang L, Pumera M. Chem. Rev., 2021, 121(8): 4999.

doi: 10.1021/acs.chemrev.0c01234     URL    
[6]
Chen X Z, Hoop M, Mushtaq F, Siringil E, Hu C Z, Nelson B J, PanÉ S. Appl. Mater. Today, 2017, 9: 37.
[7]
Wang L C, Meng Z Y, Chen Y, Zheng Y Y. Adv. Intell. Syst., 2021, 3(7): 2000267.

doi: 10.1002/aisy.202000267     URL    
[8]
Sánchez S, Soler L, Katuri J. Angew. Chem. Int. Ed., 2015, 54(5): 1414.

doi: 10.1002/anie.201406096     pmid: 25504117
[9]
Wang L, Huang Y W, Xu H B, Chen S Y, Chen H X, Lin Y P, Wang X L, Liu X M, Sanchez S, Huang X. Mater. Today Chem., 2022, 26: 101059.
[10]
Wang L, Song S D, Hest J, Abdelmohsen L K E A, Huang X, Sánchez S. Small, 2020, 16(27): 1907680.

doi: 10.1002/smll.201907680     URL    
[11]
Wang L, Liu Y J, He J, Hourwitz M J, Yang Y L, Fourkas J T, Han X J, Nie Z H. Small, 2015, 11(31): 3762.

doi: 10.1002/smll.201500527     pmid: 25925707
[12]
Gao C Y, Wang Y, Ye Z H, Lin Z H, Ma X, He Q. Adv. Mater., 2021, 33(6): 2000512.

doi: 10.1002/adma.202000512     URL    
[13]
邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊, 化学进展. 2020, 33 (11): 2056.
( Zou D Q, Wang C, Xiao F, Wei Y C, Geng L, Wang L. Prog. Chem. 2020, 33 (11): 2056.).
[14]
Gao W, Wang J. Nanoscale, 2014, 6(18): 10486.

doi: 10.1039/C4NR03124E     URL    
[15]
Chałupniak A, Morales-Narváez E, Merkoçi A. Adv. Drug Deliv. Rev., 2015, 95: 104.

doi: 10.1016/j.addr.2015.09.004     URL    
[16]
Zheng S H, Wang Y, Pan S H, Ma E H, Jin S, Jiao M, Wang W J, Li J J, Xu K, Wang H. Adv. Funct. Mater., 2021, 31(24): 2100936.

doi: 10.1002/adfm.202100936     URL    
[17]
Agrahari V, Agrahari V, Chou M L, Chew C H, Noll J, Burnouf T. Biomaterials, 2020, 260: 120163.

doi: 10.1016/j.biomaterials.2020.120163     URL    
[18]
Lv J Y, Xing Y, Xu T L, Zhang X J, Du X. Appl. Mater. Today, 2021, 23: 101034.
[19]
Li J X, de Ávila B E F, Gao W, Zhang L F, Wang J. 2017, 2;eaam6431.
[20]
Rodrigues R C, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. Chem. Soc. Rev., 2013, 42(15): 6290.

doi: 10.1039/c2cs35231a     pmid: 23059445
[21]
Tran D N, Balkus K J. ACS Catal., 2011, 1(8): 956.

doi: 10.1021/cs200124a     URL    
[22]
Somasundar A, Ghosh S, Mohajerani F, Massenburg L N, Yang T L, Cremer P S, Velegol D, Sen A. Nat. Nanotechnol., 2019, 14(12): 1129.

doi: 10.1038/s41565-019-0578-8     pmid: 31740796
[23]
Zhao X, Gentile K, Mohajerani F, Sen A. Acc. Chem. Res., 2018, 51(10): 2373.

doi: 10.1021/acs.accounts.8b00286     URL    
[24]
Wang J J, Wu H Y, Dong R F, Cai Y P. Prog. Chem., 2021, 33(5): 883.
( 王佳佳, 吴惠英, 董任峰, 蔡跃鹏. 化学进展, 2021, 33(5): 883.).

doi: 10.7536/PC200660    
[25]
Su P F, Wu H X, Chen Y M, Peng F. Prog. Chem., 2019, 31(1): 63.
( 苏沛锋, 吴鸿鑫, 陈永明, 彭飞. 化学进展, 2019, 31(1): 63.).

doi: 10.7536/PC180407    
[26]
Vilela D, Cossío U, Parmar J, Martínez-Villacorta A M, GÓmez-Vallejo V, Llop J, Sánchez S. ACS Nano, 2018, 12(2): 1220.

doi: 10.1021/acsnano.7b07220     pmid: 29361216
[27]
Hortelao AC, SimÓ C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, GÓmez-Vallejo V. BioRxiv, 2020, DOI: 10.1101/2020.06.22.146282.

doi: 10.1101/2020.06.22.146282    
[28]
Xie L S, Pang X, Yan X H, Dai Q X, Lin H R, Ye J, Cheng Y, Zhao Q L, Ma X, Zhang X Z, Liu G, Chen X Y. ACS Nano, 2020, 14(3): 2880.

doi: 10.1021/acsnano.9b06731     URL    
[29]
Xiaohui Y, Qi Z, Melissa V, Yan D, Jiangfan Y, Jianbin X, Tiantian X, Tao T, Liming B, J., WY X, Kostas K, Li Z. Sci. Robot. 2017, 2, eaaq1155.

doi: 10.1126/scirobotics.aaq1155     URL    
[30]
Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P. Int. J. Robotics Res., 2009, 28(4): 571.

doi: 10.1177/0278364908100924     URL    
[31]
Xu D D, Hu J, Pan X, Sánchez S, Yan X H, Ma X. ACS Nano, 2021, 15(7): 11543.

doi: 10.1021/acsnano.1c01573     URL    
[32]
Olson E S, Orozco J, Wu Z, Malone C D, Yi B, Gao W, Eghtedari M, Wang J, Mattrey R F. Biomaterials, 2013, 34(35): 8918.

doi: 10.1016/j.biomaterials.2013.06.055     URL    
[33]
Wang L, Ma S H, Wang X J, Liu D Q, Liu S Q, Han X J. J. Mater. Chem. B, 2013, 1(38): 5021.

doi: 10.1039/c3tb20868k     pmid: 32261092
[34]
Jie G F, Wang L, Yuan J X, Zhang S S. Anal. Chem., 2011, 83(10): 3873.

doi: 10.1021/ac200383z     URL    
[35]
Liu D Q, Wang L, Ma S H, Jiang Z H, Yang B, Han X J, Liu S Q. Nanoscale, 2015, 7(8): 3627.

doi: 10.1039/C4NR06946C     URL    
[36]
Li D, Mallory T, Satomura S. Clin. Chimica Acta, 2001, 313(1/2): 15.

doi: 10.1016/S0009-8981(01)00644-1     URL    
[37]
Catalona W J, Southwick P C, Slawin K M, Partin A W, Brawer M K, Flanigan R C, Patel A, Richie J P, Walsh P C, Scardino P T, Lange P H, Gasior G H, Loveland K G, Bray K R. Urology, 2000, 56(2): 255.

pmid: 10925089
[38]
Zhang X Q, Chen C T, Wu J, Ju H X. ACS Appl. Mater. Interfaces, 2019, 11(14): 13581.

doi: 10.1021/acsami.9b00605     URL    
[39]
Fu S Z, Zhang X Q, Xie Y Z, Wu J, Ju H X. Nanoscale, 2017, 9(26): 9026.

doi: 10.1039/C7NR01168G     URL    
[40]
Simmchen J, Baeza A, Ruiz D, Esplandiu M J, Vallet-Regí M. Small, 2012, 8(13): 2053.

doi: 10.1002/smll.201101593     pmid: 22511610
[41]
Xie Y Z, Fu S Z, Wu J, Lei J P, Ju H X. Biosens. Bioelectron., 2017, 87: 31.

doi: 10.1016/j.bios.2016.07.104     URL    
[42]
Henriquez-Camacho C, Losa J. Biomed Res. Int., 2014, 2014: 547818.
[43]
Dymicka-Piekarska V, Wasiluk A. Postepy Hig. Med. Dosw. (Online), 2015, 69: 723.
[44]
Russell S M, Alba-Patiño A, Borges M, de la Rica R. Biosens. Bioelectron., 2019, 140: 111346.

doi: 10.1016/j.bios.2019.111346     URL    
[45]
Paterlini-Brechot P, Benali N L. Cancer Lett., 2007, 253(2): 180.

pmid: 17314005
[46]
Shen Z Y, Wu A G, Chen X Y. Chem. Soc. Rev., 2017, 46(8): 2038.

doi: 10.1039/C6CS00803H     URL    
[47]
Zhao L, Liu Y, Xie S Z, Ran P, Wei J J, Liu Q J, Li X H. Chem. Eng. J., 2020, 382: 123041.

doi: 10.1016/j.cej.2019.123041     URL    
[48]
Bailar J C, Gornik H L. N Engl J. Med., 1997, 336(22): 1569.

doi: 10.1056/NEJM199705293362206     URL    
[49]
Lin R Y, Yu W Q, Chen X C, Gao H L. Adv. Healthcare Mater., 2021, 10(1): 2001212.

doi: 10.1002/adhm.202001212     URL    
[50]
Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Nat. Rev. Mater., 2016, 1(5): 16014.

doi: 10.1038/natrevmats.2016.14     URL    
[51]
Tu Y F, Peng F, Wilson D A. Adv. Mater., 2017, 29(39): 1701970.

doi: 10.1002/adma.201701970     URL    
[52]
Gardner A M, Xu F H, Fady C, Jacoby F J, Duffey D C, Tu Y P, Lichtenstein A. Free. Radic. Biol. Med., 1997, 22(1/2): 73.

doi: 10.1016/S0891-5849(96)00235-3     URL    
[53]
Gao W W, de Ávila B E F, Zhang L F, Wang J. Adv. Drug Deliv. Rev., 2018, 125: 94.

doi: 10.1016/j.addr.2017.09.002     URL    
[54]
Zoumpourlis V, Kerr D J, Spandidos D A. Cancer Lett., 1991, 56(2): 181.

pmid: 1705476
[55]
Sanchez S, Solovev A A, Mei Y F, Schmidt O G. J. Am. Chem. Soc., 2010, 132(38): 13144.

doi: 10.1021/ja104362r     pmid: 20860367
[56]
Keller S, Teora S P, Hu G X, Nijemeisland M, Wilson D A. Angew. Chem. Int. Ed., 2018, 57(31): 9814.

doi: 10.1002/anie.201805661     URL    
[57]
Jiang W, Kim B Y S, Rutka J T, Chan W C W. Nat. Nanotechnol., 2008, 3(3): 145.

doi: 10.1038/nnano.2008.30     pmid: 18654486
[58]
Dai Y L, Xu C, Sun X L, Chen X Y. Chem. Soc. Rev., 2017, 46(12): 3830.

doi: 10.1039/C6CS00592F     URL    
[59]
Sun J W, Mathesh M, Li W, Wilson D A. ACS Nano, 2019, 13(9): 10191.

doi: 10.1021/acsnano.9b03358     URL    
[60]
Li H A, Sun Z Y, Jiang S Q, Lai X Y, Böckler A, Huang H H, Peng F, Liu L X, Chen Y M. Nano Lett., 2019, 19(12): 8749.

doi: 10.1021/acs.nanolett.9b03456     URL    
[61]
Wu Z G, Lin X K, Zou X, Sun J M, He Q. ACS Appl. Mater. Interfaces, 2015, 7(1): 250.

doi: 10.1021/am507680u     URL    
[62]
Wu Y J, Lin X K, Wu Z G, Möhwald H, He Q. ACS Appl. Mater. Interfaces, 2014, 6(13): 10476.

doi: 10.1021/am502458h     URL    
[63]
Gao S, Hou J W, Zeng J, Richardson J J, Gu Z, Gao X, Li D W, Gao M, Wang D W, Chen P, Chen V, Liang K, Zhao D Y, Kong B. Adv. Funct. Mater., 2019, 29(18): 1808900.

doi: 10.1002/adfm.201808900     URL    
[64]
Kaufman D S, Shipley W U, Feldman A S. Lancet, 2009, 374(9685): 239.

doi: 10.1016/S0140-6736(09)60491-8     pmid: 19520422
[65]
Kamat A M, Hahn N M, Efstathiou J A, Lerner S P, Malmström P U, Choi W, Guo C C, Lotan Y, Kassouf W. Lancet, 2016, 388(10061): 2796.

doi: 10.1016/S0140-6736(16)30512-8     URL    
[66]
Ma X, Hortelao A C, Miguel-LÓpez A, Sánchez S. J. Am. Chem. Soc., 2016, 138(42): 13782.

doi: 10.1021/jacs.6b06857     URL    
[67]
Ma X, Wang X, Hahn K, Sánchez S. ACS Nano, 2016, 10(3): 3597.

doi: 10.1021/acsnano.5b08067     URL    
[68]
Cone R A. Adv. Drug Deliv. Rev., 2009, 61(2): 75.

doi: 10.1016/j.addr.2008.09.008     URL    
[69]
Walker D, Käsdorf B T, Jeong H H, Lieleg O, Fischer P. Sci. Adv., 2015, 1(11): e1500501.

doi: 10.1126/sciadv.1500501     URL    
[70]
Chen Z J, Xia T, Zhang Z L, Xie S Z, Wang T, Li X H. Chem. Eng. J., 2019, 375: 122109.

doi: 10.1016/j.cej.2019.122109     URL    
[71]
Hortelão A C, Patiño T, Perez-JimÉnez A, Blanco À, Sánchez S. Adv. Funct. Mater., 2018, 28(25): 1705086.

doi: 10.1002/adfm.201705086     URL    
[72]
Hortelão A C, Carrascosa R, Murillo-Cremaes N, Patiño T, Sánchez S. ACS Nano, 2019, 13(1): 429.

doi: 10.1021/acsnano.8b06610     pmid: 30588798
[73]
Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão A C, Patiño T, Villalonga R, SancenÓn F, Martínez-Máñez R, Sánchez S. ACS Nano, 2019, 13(10): 12171.

doi: 10.1021/acsnano.9b06706     pmid: 31580642
[74]
Choi H, Cho S H, Hahn S K. ACS Nano, 2020, 14(6): 6683.

doi: 10.1021/acsnano.9b09726     URL    
[75]
Sugai N, Morita Y, Komatsu T. Chem. Asian J., 2019, 14(17): 2953.

doi: 10.1002/asia.201900927     URL    
[76]
Hortelao A C, Cristina S, Maria G, Sandra G G, Esther J, Diana V, Luka R, Pedro R C, Unai C, Vanessa G V, Tania P, Jordi L, Sánchez S. Sci. Robot., 2021, 6(52), DOI: 10.1126/scirobotics.abd282.

doi: 10.1126/scirobotics.abd282    
[77]
Heiden M G V, Cantley L C, Thompson C B. Science. 2009, 324: 1029.

doi: 10.1126/science.1160809     URL    
[78]
Fu L H, Qi C, Lin J, Huang P. Chem. Soc. Rev., 2018, 47(17): 6454.

doi: 10.1039/C7CS00891K     URL    
[79]
Selwan E M, Finicle B T, Kim S M, Edinger A L. FEBS Lett., 2016, 590(7): 885.

doi: 10.1002/1873-3468.12121     URL    
[80]
Yu S J, Chen Z W, Zeng X, Chen X S, Gu Z. Theranostics, 2019, 9(26): 8026.

doi: 10.7150/thno.38261     URL    
[81]
Ma X, Jannasch A, Albrecht U R, Hahn K, Miguel-LÓpez A, Schäffer E, Sánchez S. Nano Lett., 2015, 15(10): 7043.

doi: 10.1021/acs.nanolett.5b03100     URL    
[82]
Schattling P, Thingholm B, Städler B. Chem. Mater., 2015, 27(21): 7412.

doi: 10.1021/acs.chemmater.5b03303     URL    
[83]
Abdelmohsen L K E A, Nijemeisland M, Pawar G M, Janssen G J A, Nolte R J M, van Hest J C M, Wilson D A. ACS Nano, 2016, 10(2): 2652.

doi: 10.1021/acsnano.5b07689     pmid: 26811982
[84]
Schattling P S, Ramos-Docampo M A, Salgueiriño V, Städler B. ACS Nano, 2017, 11(4): 3973.

doi: 10.1021/acsnano.7b00441     pmid: 28328201
[85]
Gao C Y, Zhou C, Lin Z H, Yang M C, He Q. ACS Nano, 2019, 13(11): 12758.

doi: 10.1021/acsnano.9b04708     URL    
[86]
Ji Y X, Lin X K, Wu Z G, Wu Y J, Gao W, He Q. Angew. Chem. Int. Ed., 2019, 58(35): 12200.

doi: 10.1002/anie.201907733     URL    
[87]
Rucinskaite G, Thompson S A, Paterson S, de la Rica R. Nanoscale, 2017, 9(17): 5404.

doi: 10.1039/c7nr00298j     pmid: 28426045
[88]
Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-Perez L, Gaitzsch J, Fullstone G, Tian X H, Azizi J, Preston J, Volpe G, Battaglia G. Sci. Adv., 2017, 3(8): e1700362.

doi: 10.1126/sciadv.1700362     URL    
[89]
Mano N, Heller A. J. Am. Chem. Soc., 2005, 127(33): 11574.

doi: 10.1021/ja053937e     URL    
[90]
Pantarotto D, Browne W R, Feringa B L. Chem. Commun., 2008(13): 1533.
[91]
Nijemeisland M, Abdelmohsen L K E A, Huck W T S, Wilson D A, van Hest J C M. ACS Cent. Sci., 2016, 2(11): 843.

doi: 10.1021/acscentsci.6b00254     URL    
[92]
You Y Q, Xu D D, Pan X, Ma X. Appl. Mater. Today, 2019, 16: 508.
[93]
Mead J R, Irvine S A, Ramji D P. J. Mol. Med., 2002, 80(12): 753.

doi: 10.1007/s00109-002-0384-9     URL    
[94]
Stergiou P Y, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou L G, Hatziloukas E, Afendra A, Pandey A, Papamichael E M. Biotechnol. Adv., 2013, 31(8): 1846.

doi: 10.1016/j.biotechadv.2013.08.006     URL    
[95]
Wang L, Hortelão AC, Huang X, Sánchez S. Angew. Chemie Int. Ed., 2019, 58: 7992.

doi: 10.1002/anie.201900697     URL    
[96]
Xing Y, Du X, Xu T L, Zhang X J. Soft Matter, 2020, 16(41): 9553.

doi: 10.1039/D0SM01355B     URL    
[97]
Wang L, Marciello M, EstÉvez-Gay M, Soto Rodriguez P E D, Luengo Morato Y, Iglesias-Fernández J, Huang X, Osuna S, Filice M, Sánchez S. Angew. Chem. Int. Ed., 2020, 59(47): 21080.

doi: 10.1002/anie.202008339     URL    
[98]
Hu Y, Sun Y. Biochem. Eng. J., 2019, 149: 107242.

doi: 10.1016/j.bej.2019.107242     URL    
[99]
Elsland D, Neefjes J. EMBO Rep., 2018, 19(11): e46632.
[100]
Hortelão A C, García-Jimeno S, Cano-Sarabia M, Patiño T, Maspoch D, Sanchez S. Adv. Funct. Mater., 2020, 30(42): 2002767.

doi: 10.1002/adfm.202002767     URL    
[101]
Choi H, Jeong S H, Kim T Y, Yi J, Hahn S K. Bioact. Mater., 2022, 9: 54.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[8] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[9] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[10] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[11] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[12] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[13] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[14] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[15] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.