English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 168-177 DOI: 10.7536/PC210354 前一篇   后一篇

• 综述 •

基于液晶弹性体的软体机器人

王猛*(), 杨剑峰   

  1. 东南大学化学化工学院 南京 211189
  • 收稿日期:2021-03-31 修回日期:2021-04-21 出版日期:2022-01-20 发布日期:2021-07-29
  • 通讯作者: 王猛
  • 基金资助:
    国家自然科学基金项目(52173109); 国家自然科学基金项目(51903048)

Liquid Crystal Elastomers Based Soft Robots

Meng Wang(), Jianfeng Yang   

  1. School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received:2021-03-31 Revised:2021-04-21 Online:2022-01-20 Published:2021-07-29
  • Contact: Meng Wang
  • Supported by:
    National Natural Science Foundation of China(52173109); National Natural Science Foundation of China(51903048)

作为热门的机器人研究方向,软体机器人通常由软材料制成,具有众多的自由度、能够承受大变形、连续变形和柔顺接触等优势,在微小物体操作和空间受限环境运动等特殊应用领域具有重要的研究价值。其中,液晶弹性体,作为一种最具代表性的智能材料,同时具有液晶各向异性和橡胶弹性,在外界刺激(热、光、电、磁、pH、湿度等)下,其相态或分子结构会产生变化,进而改变液晶基元的排列顺序,从而导致材料本身发生宏观形变,当撤去外界刺激后,液晶弹性体可以恢复到原来的形状。这种独特的双向形状记忆性能使液晶弹性体成为制备软体机器人最适宜的材料之一。目前,根据驱动方式的不同,液晶弹性体软体机器人的研究主要分为热驱动软体机器人、光驱动软体机器人、电驱动软体机器人及其他驱动类型软体机器人,如磁场驱动和湿度驱动液晶弹性体软体机器人等。本文综述了液晶弹性体软体机器人的研究进展,详细介绍了不同驱动方式的液晶弹性体软体机器人体系,并对液晶弹性体软体机器人的发展前景进行了展望。

As a hot robot research direction, soft robots have potential applications in many fields, such as the operation of small objects in limited space, due to the advantages including many degrees of freedom, excellent adaptability and flexible contact. As a classical smart material, liquid crystal elastomers (LCEs) are very promising to be the suitable candidate for preparing the soft robots owing to the large and reversible shape deformations in response to external stimuli (heat, light, electric or magnetic field, humidity, etc.). Due to the changes of microscopic orders or molecular structures of uniaxial-aligned mesogens, the whole LCE materials can execute very large and reversible macroscopic actuation during the LC-to-isotropic phase transition process. At present, according to different driving modes, the research of LCE-based soft robots mainly focuses on the thermal-driven soft robots, light-driven soft robots, electro-driven soft robots, magnetic-driven soft robots and humidity-driven soft robots. This article reviews the developments of LCE-based soft robots, and also introduces the main different driving modes and related LCE-based soft robot systems in detail. Besides, the article further provides a view of prospective development in the future for LCE-based soft robots.

Contents

1 Introduction

2 Thermal-driven liquid crystal elastomer based soft robot

3 Light-driven liquid crystal elastomer based soft robot

3.1 Crawling soft robots

3.2 Rolling soft robots

3.3 Swimming soft robots

4 Electro-driven liquid crystal elastomer based soft robots

4.1 Carbon conductive material/liquid crystal elastomer based soft robot

4.2 Metal conductive material/liquid crystal elastomer based soft robot

4.3 Conductive polymer material/liquid crystal elastomer based soft robot

5 Liquid crystal elastomer based soft robots driven by other stimuli

6 Conclusion and outlook

()
图1 液晶弹性体在外界刺激下的双向形状记忆行为
Fig. 1 Two-way shape memory behavior of LCEs under external stimuli
图2 软体机器人在热刺激下实现8种不同的形状变化[41]
Fig. 2 Eight different thermal-induced shape changes of soft robots[41]
图3 软体机器人在不同近红外光刺激下实现精准多方向运动的过程[48]
Fig. 3 The precise multi-directional motion of soft robots under different near-infrared lights[48]
图4 蛇形软体机器人在近红外光刺激下实现蛇形运动[50]
Fig. 4 The serpentine locomotion of a snake-mimic soft robot under near-infrared light[50]
图5 基于kirigami的滚动型软体机器人[52]
Fig. 5 The rolling soft robot based on kirigami[52]
图6 微型游泳机器人在紫外光的驱动下运动的过程[56]
Fig. 6 A swimming micro-robot driven by ultraviolet light[56]
图7 基于液晶弹性体/炭黑的电驱动圆筒软体机器人[67]
Fig. 7 The electro-driven cylinder soft robot based on liquid crystal elastomer/carbon black composite film[67]
图8 软体机器人在电场下行走并推动重物[68]
Fig. 8 The walking and pushing modes of the soft robot under the electric field[68]
图9 软体机器人抓取和举起樱桃的实物图[70]
Fig. 9 The grabbing and lifting motions of the soft robot[70]
图10 软体机器人在外界磁场刺激下自发行走[75]
Fig. 10 The magnetic-induced spontaneous movement of the soft robot[75]
[1]
Trivedi D, Rahn C D, Kier W M, Walker I D. Appl. Bionics Biomech., 2008,5(3): 99.

doi: 10.1155/2008/520417     URL    
[2]
Kim S, Laschi C, Trimmer B. Trends Biotechnol., 2013,31(5): 287.

doi: 10.1016/j.tibtech.2013.03.002     URL    
[3]
Majidi C. Soft Robotics, 2014,1(1): 5.

doi: 10.1089/soro.2013.0001     URL    
[4]
Laschi C, Cianchetti M. Front. Bioeng. Biotechnol., 2014,2: 3.
[5]
Palagi S, Fischer P. Nat. Rev. Mater., 2018,3(6): 113.

doi: 10.1038/s41578-018-0016-9     URL    
[6]
Li J, de Ávila B E F, Gao W, Zhang L F, Wang J. Sci. Robot., 2017,2: eaam6431.

doi: 10.1126/scirobotics.aam6431     URL    
[7]
Rus D, Tolley M T. Nature, 2015,521(7553): 467.

doi: 10.1038/nature14543     URL    
[8]
Jin B J, Song H J, Jiang R Q, Song J Z, Zhao Q, Xie T. Sci. Adv., 2018,4(1): eaao3865. DOI: 10.1126/sciadv.aao3865.

doi: 10.1126/sciadv.aao3865     URL    
[9]
Zheng N, Fang Z Z, Zou W K, Zhao Q, Xie T. Angew. Chem., 2016,128(38): 11593.

doi: 10.1002/ange.201602847     URL    
[10]
Fang Z Z, Zheng N, Zhao Q, Xie T. ACS Appl. Mater. Interfaces, 2017,9(27): 22077.

doi: 10.1021/acsami.7b05713     URL    
[11]
Zhao Q, Zou W, Luo Y, Xie T. Sci. Adv., 2016,2: e1501297.

doi: 10.1126/sciadv.1501297     URL    
[12]
van Oosten C L, Bastiaansen C W M, Broer D J. Nat. Mater., 2009,8(8): 677.

doi: 10.1038/nmat2487     URL    
[13]
Li X, Cai X B, Gao Y F, Serpe M J. J. Mater. Chem. B, 2017,5(15): 2804.

doi: 10.1039/C7TB00426E     URL    
[14]
Suzumori K, Iikura S, Tanaka H. IEEE Control Syst. Mag., 1992,12: 21.
[15]
Jung K, Koo J C, Nam J D, Lee Y K, Choi H R. Bioinspir. Biomim., 2007,2(2): S42.

doi: 10.1088/1748-3182/2/2/S05     URL    
[16]
Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P. Adv. Robotics, 2012,26(7): 709.

doi: 10.1163/156855312X626343     URL    
[17]
Chambers L D, Winfield J, Ieropoulos I, Rossiter J. International Society for Optics and Photonics(Eds. BarCohen Y). San Diego: SPIE, 2014,9056: 90560B.
[18]
Nelson B J, Kaliakatsos I K, Abbott J J. Annu. Rev. Biomed. Eng., 2010,12(1): 55.

doi: 10.1146/bioeng.2010.12.issue-1     URL    
[19]
Nocentini S, Parmeggiani C, Martella D, Wiersma D S. Adv. Opt. Mater., 2018,6: 1800207.

doi: 10.1002/adom.v6.14     URL    
[20]
Küpfer J, Finkelmann H. Makromol. Chem., Rapid Commun., 1991,12(12): 717.
[21]
Ware T H, McConney M E, Wie J J, Tondiglia V P, White T J. Science, 2015,347(6225): 982.

doi: 10.1126/science.1261019     URL    
[22]
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Phys. Rev. Lett., 2001,87: 015501.

doi: 10.1103/PhysRevLett.87.015501     URL    
[23]
Yu Y L, Nakano M, Ikeda T. Nature, 2003,425(6954): 145.

doi: 10.1038/425145a     URL    
[24]
Broer D J, Bastiaansen C M W, Debije M G, Schenning A P H J. Angew. Chem. Int. Ed., 2012,51(29): 7102.

doi: 10.1002/anie.201200883     URL    
[25]
Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt A M. Macromol. Symp., 2010, 291- 292(1): 186.
[26]
Harris K D, Bastiaansen C W M, Lub J, Broer D J. Nano Lett., 2005,5(9): 1857.

doi: 10.1021/nl0514590     URL    
[27]
Wei J, Yu Y L. Soft Matter, 2012,8(31): 8050.

doi: 10.1039/c2sm25474c     URL    
[28]
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lösche M, Kremer F. Nature, 2001,410(6827): 447.

doi: 10.1038/35068522     URL    
[29]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019,7(3): 622.

doi: 10.1039/C8TC05186K     URL    
[30]
Hu J, Li X, Ni Y, Ma S D, Yu H F. J. Mater. Chem. C, 2018,6(40): 10815.

doi: 10.1039/C8TC03693D     URL    
[31]
Finkelmann H, Kock H J, Rehage G. Makromol. Chem., Rapid Commun., 1981,2(4): 317.
[32]
Clarke S M, Hotta A, Tajbakhsh A R, Terentjev E M. Phys. Rev. E, 2001,64(6): 061702.

doi: 10.1103/PhysRevE.64.061702     URL    
[33]
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv. Mater., 2019,31(52): 1904224.

doi: 10.1002/adma.v31.52     URL    
[34]
Ube T, Ikeda T. Adv. Optical Mater., 2019,7(16): 1900380.

doi: 10.1002/adom.v7.16     URL    
[35]
Gu W, Qing X, Wei J, Yu Y L. Chin. Sci. Bull., 2016,61(19): 2102.

doi: 10.1360/N972016-00006     URL    
[36]
Ali I, Li X D, Chen X Q, Jiao Z W, Pervaiz M, Yang W M. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2019,103: 109852.

doi: 10.1016/j.msec.2019.109852     URL    
[37]
Pelrine R, Kornbluh R, Pei Q, Joseph J. Science, 2000,287: 836.

pmid: 10657293
[38]
Qi X D, Xiu H, Wei Y, Zhou Y, Guo Y L, Huang R, Bai H W, Fu Q. Compos. Sci. Technol., 2017,139: 8.

doi: 10.1016/j.compscitech.2016.12.007     URL    
[39]
De Gennes P G, Prost J. The Physics of Liquid Crystals, Oxford University Press, 1993.
[40]
Ambulo C P, Burroughs J J, Boothby J M, Kim H, Shankar M R, Ware T H. ACS Appl. Mater. Interfaces, 2017,9(42): 37332.

doi: 10.1021/acsami.7b11851     URL    
[41]
Yang R, Zhao Y. Angew. Chem., 2017,129(45): 14390.

doi: 10.1002/ange.201709528     URL    
[42]
Saed M O, Ambulo C P, Kim H, De R, Raval V, Searles K, Siddiqui D A, Cue J M O, Stefan M C, Shankar M R, Ware T H. Adv. Funct. Mater., 2019,29(3): 1806412.

doi: 10.1002/adfm.v29.3     URL    
[43]
Habault D, Zhang H J, Zhao Y. Chem. Soc. Rev., 2013,42(17): 7244.

doi: 10.1039/c3cs35489j     pmid: 23440057
[44]
Bushuyev O S, Aizawa M, Shishido A, Barrett C J. Macromol. Rapid Commun., 2018,39(1): 1700253.

doi: 10.1002/marc.v39.1     URL    
[45]
Wang M, Ma D Y, Wang C J. Prog. Chem., 2020,32: 1452.
( 王猛, 马丹阳, 王成杰. 化学进展, 2020,32(10): 1452.)

doi: 10.7536/PC200335    
[46]
Alexander R M. Evol. Anthropol., 2004, 13:160.

doi: 10.1002/evan.20018     URL    
[47]
Ge F J, Yang R, Tong X, Camerel F, Zhao Y. Angew. Chem. Int. Ed., 2018,57(36): 11758.

doi: 10.1002/anie.v57.36     URL    
[48]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019,10: 1.

doi: 10.1038/s41467-018-07882-8     URL    
[49]
Zeng H, Wani O M, Wasylczyk P, Priimagi A. Macromol. Rapid Commun., 2018,39(1): 1700224.

doi: 10.1002/marc.v39.1     URL    
[50]
Wang M, Hu X B, Zuo B, Huang S, Chen X M, Yang H. Chem. Commun., 2020,56(55): 7597.

doi: 10.1039/D0CC02823A     URL    
[51]
Wie J J, Shankar M R, White T J. Nat. Commun., 2016,7(1): 1.
[52]
Cheng Y C, Lu H C, Lee X, Zeng H, Priimagi A. Adv. Mater., 2020,32(7): 1906233.

doi: 10.1002/adma.v32.7     URL    
[53]
Wang Z J, Li K, He Q G, Cai S Q. Adv. Mater., 2019,31(7): 1806849.

doi: 10.1002/adma.v31.7     URL    
[54]
Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N, Giesselmann F, Wiersma D S, Lauga E, Fischer P. Nat. Mater., 2016,15(6): 647.

doi: 10.1038/nmat4569     URL    
[55]
Fischer P, Ghosh A. Nanoscale, 2011,3(2): 557.

doi: 10.1039/c0nr00566e     pmid: 21152575
[56]
Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L, Liu J. Sci. Rep., 2015,5(1): 1.
[57]
Ma S D, Li X, Huang S, Hu J, Yu H F. Angew. Chem. Int. Ed., 2019,58(9): 2655.

doi: 10.1002/anie.v58.9     URL    
[58]
Tian H M, Wang Z J, Chen Y L, Shao J Y, Gao T, Cai S Q. ACS Appl. Mater. Interfaces, 2018,10(9): 8307.

doi: 10.1021/acsami.8b00639     URL    
[59]
de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013,339(6119): 535.

doi: 10.1126/science.1222453     URL    
[60]
Chen L Z, Weng M C, Zhou Z W, Zhou Y, Zhang L L, Li J X, Huang Z G, Zhang W, Liu C H, Fan S S. ACS Nano, 2015,9(12): 12189.

doi: 10.1021/acsnano.5b05413     URL    
[61]
Yadav N, Tyagi M, Wadhwa S, Mathur A, Narang J. Methods in Enzymology. Amsterdam: Elsevier, 2020,630: 347.
[62]
Kim H, Lee J A, Ambulo C P, Lee H B, Kim S H, Naik V V, Haines C S, Aliev A E, Ovalle-Robles R, Baughman R H, Ware T H. Adv. Funct. Mater., 2019,29(48): 1905063.

doi: 10.1002/adfm.v29.48     URL    
[63]
Liu H R, Tian H M, Shao J Y, Wang Z J, Li X M, Wang C H, Chen X L. ACS Appl. Mater. Interfaces, 2020,12(50): 56338.

doi: 10.1021/acsami.0c17327     URL    
[64]
Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D. Biosens. Bioelectron., 2020,156: 112033.

doi: 10.1016/j.bios.2020.112033     URL    
[65]
Mazzaracchio V, Tomei M R, Cacciotti I, Chiodoni A, Novara C, Castellino M, Scordo G, Amine A, Moscone D, Arduini F. Electrochimica Acta, 2019,317: 673.

doi: 10.1016/j.electacta.2019.05.117    
[66]
Wang C J, Sim K, Chen J, Kim H, Rao Z L, Li Y H, Chen W Q, Song J Z, Verduzco R, Yu C J. Adv. Mater., 2018,30(13): 1706695.

doi: 10.1002/adma.v30.13     URL    
[67]
Wang M, Cheng Z W, Zuo B, Chen X M, Huang S, Yang H. ACS Macro Lett., 2020,9(6): 860.

doi: 10.1021/acsmacrolett.0c00333     URL    
[68]
Xiao Y Y, Jiang Z C, Tong X, Zhao Y. Adv. Mater., 2019,31(36): 1903452.

doi: 10.1002/adma.v31.36     URL    
[69]
He Q G, Wang Z J, Wang Y, Minori A, Tolley M T, Cai S Q. Sci. Adv., 2019,5(10): eaax5746.

doi: 10.1126/sciadv.aax5746     URL    
[70]
Ma B, Xu C T, Cui L S, Zhao C, Liu H. ACS Appl. Mater. Interfaces, 2021,13(4): 5574.

doi: 10.1021/acsami.0c20418     URL    
[71]
Holze R, Wu Y P. Electrochimica Acta, 2014,122: 93.

doi: 10.1016/j.electacta.2013.08.100     URL    
[72]
Naoi K, Naoi W, Aoyagi S, Miyamoto J I, Kamino T. Acc. Chem. Res., 2013,46(5): 1075.

doi: 10.1021/ar200308h     URL    
[73]
Greco F, Domenici V, Desii A, Sinibaldi E, Zupančič B, Zalar B, Mazzolai B, Mattoli V,. Soft Matter, 2013,9(47): 11405.

doi: 10.1039/c3sm51153g     URL    
[74]
Feng C R, Rajapaksha C P H, Cedillo J M, Piedrahita C, Cao J W, Kaphle V, Lüssem B, Kyu T, Jákli A. Macromol. Rapid Commun., 2019,40(19): 1900299.

doi: 10.1002/marc.v40.19     URL    
[75]
Zhang J C, Guo Y B, Hu W Q, Soon R H, Davidson Z S, Sitti M. Adv. Mater., 2021,33(8): 2006191.

doi: 10.1002/adma.v33.8     URL    
[76]
Verpaalen R C P, Souren A E J, Debije M G, Engels T A P, Bastiaansen C W M, Schenning A P H J. Soft Matter, 2020,16(11): 2753.

doi: 10.1039/d0sm00030b     pmid: 32083272
[77]
Wani O M, Verpaalen R, Zeng H, Priimagi A, Schenning A P H J. Adv. Mater., 2019,31(2): 1805985.

doi: 10.1002/adma.v31.2     URL    
[1] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[2] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[3] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[4] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[5] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[6] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[7] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[8] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[9] 杜海燕, 雷霞, 许玉玉, 梁镇海, 王永洪. 聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为[J]. 化学进展, 2016, 28(11): 1648-1657.
[10] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[11] 李兴建, 王亚茹, 郑朝晖, 丁小斌, 彭宇行. 形状记忆高分子材料的网络结构化设计和性能研究[J]. 化学进展, 2013, 25(10): 1726-1738.
[12] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[13] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[14] 武元鹏, 林元华, 周莹, 左芳, 郑朝晖, 丁小斌. 光致型形状记忆高分子材料[J]. 化学进展, 2012, (10): 2004-2010.
[15] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
阅读次数
全文


摘要

基于液晶弹性体的软体机器人