English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1726-1738 DOI: 10.7536/PC130126 前一篇   后一篇

• 综述与评论 •

形状记忆高分子材料的网络结构化设计和性能研究

李兴建1,2, 王亚茹1,2, 郑朝晖1, 丁小斌1, 彭宇行1   

  1. 1. 中国科学院成都有机化学研究所 成都610041;
    2. 中国科学院大学 北京100039
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 郑朝晖, 丁小斌 E-mail:xbding@cioc.ac.cn; zhzheng@cioc.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.51173185)资助

Structural Design and Property Study of Shape Memory Polymer Network

Li Xingjian1,2, Wang Yaru1,2, Zheng Zhaohui1, Ding Xiaobin1, Peng Yuxing1   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

形状记忆聚合物是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。它是智能高分子材料研究、开发和应用的一个新热点。在智能纺织材料、生物医用材料、航空航天技术等领域显示了极为广阔的应用前景。为了使形状记忆聚合物材料在这些领域具有更加实际和广泛的应用,通常要求这些材料要有更高的固定率和回复率、更快的回复速度、优异的机械性能和良好的性能可控性。通常情况下材料的结构决定其性能,因此形状记忆聚合物的结构化设计是一个非常值得探讨的话题。本文从网络结构化设计的角度综述了基于互穿网络结构、AB型网络结构、规整网络结构、“互锁”网络拓扑结构设计的形状记忆高分子材料的研究进展,分别介绍了这些材料的结构和性能的关系、特点及其潜在应用。最后,对具有网络结构形状记忆高分子材料的发展方向和应用前景进行了展望。

Shape memory polymers (SMPs) are a promising class of intelligent polymer materials that have the ability to recover the permanent shape in a predefined way from the temporary shape in response to external stimuli. SMPs have become a new hot spot in the field of smart materials and have shown many potential applications in various fields, such as smart textile materials, biomedical materials, aerospace technology, and so on. In order to better utilize SMPs in these fields, high recovery rate and fixed rate, excellent mechanical properties, fast response speed, and good adjustable performance are required. Generally, the properties are mainly determined by the intrinsic structure, and the design of SMPs with novel structure has become a worthy topic. In this review, the progress in SMPs design based on the network structure is summarized systematically, including the relationship between their structure and properties, characteristics and potential applications, focusing on the design of SMP materials with interpenetrating network structure, AB network structure, homogenous network structure, topological structure of interlocked network. Finally, the future developments and applications of SMPs with the network structure are prospected.

Contents
1 Introduction
2 Design of SMPs based on interpenetrating network structure
3 Design of SMPs based on AB network structure
4 Design of SMPs based on homogenous network structure
4.1 Design of SMPs based on homogenous network with star structure
4.2 Design of SMPs based on homogenous network structure with nanoparticle netpoints
5 Design of SMPs based on topological structure of interlocked network
6 Conclusion and outlook

 

中图分类号: 

()
[1] Lendlein A, Kelch S. Angew. Chem. Int. Ed., 2002, 41(12): 2034—2057
[2] Leng J S, Lan X, Liu Y J, Du S Y. Prog. Mater. Sci., 2011, 56(7): 1077—1135
[3] Liu C, Qin H, Mather P T. J. Mater. Chem., 2007, 17(16): 1543—1558
[4] Meng Q H, Hu J L, Zhu Y, Lu J, Liu B H. Text. Res. J., 2009, 79(16): 1522—1533
[5] Hu J L, Meng H, Li G Q, Ibekwe S I. Smart Mater. Struct., 2012, 21(5): art. no. 053001
[6] Small W, Singhal P, Wilson T S, Maitland D J. J. Mater. Chem., 2010, 20(17): 3356—3366
[7] Sokolowski W, Metcalfe A, Hayashi S, Yahia L H, Raymond J. Biomed. Mater., 2007, 2(1): S23—S27
[8] Lendlein A, Langer R. Science, 2002, 296: 1673—1676
[9] Reed J L, Hemmelgarn C D, Pelley B M, Havens E. Proc. SPIE, 2005, 5762: 132—142
[10] Sokolowski W M, Tan S C. J. Spacecr. Rocket, 2007, 44(4): 750—754
[11] Pretsch T, Ecker M, Schildhauer M. Maskos M. J. Mater. Chem., 2012, 22(16): 7757—7766
[12] Gall K, Kreiner P, Turner D, Hulse M. J. Microelectromech. Syst., 2004, 13(3): 472—483
[13] Rodriguez E D, Luo X, Mather P T. ACS Appl. Mater. Interfaces, 2011, 3(2): 152—161
[14] Xiao X, Xie T, Cheng Y T. J. Mater. Chem., 2010, 20(17): 3508—3514
[15] Serrano M C, Carbajal L, Ameer G A. Adv. Mater., 2011, 23(19): 2211—2215
[16] Wischke C, Neffe A T, Steuer S, Lendlein A. J. Controlled Release, 2009, 138(3): 243—250
[17] 石田正雄(Shitian Z X). 配管技术 (Pipe Technology), 1989, 31(8): 112—114
[18] Behl M, Lendlein A. Mater. Today, 2007, 10(4): 20—28
[19] Mather P T, Luo X F, Rousseau I A. Annu. Rev. Mater. Res., 2009, 39: 445—471
[20] Behl M, Razzaq M Y, Lendlein A. Adv. Mater., 2010, 22(31): 3388—3410
[21] Xie T. Polymer, 2011, 52(22): 4985—5000
[22] Hu J L, Chen S J. J. Mater. Chem., 2010, 20(17): 3346—3355
[23] Hu J L, Zhu Y, Huang H H, Lu J. Prog. Polym. Sci., 2012, 37(12): 1720—1763
[24] Ahn S K, Deshmukh P, Gopinadhan M, Osuji C O, Kasi R M. ACS Nano, 2011, 5(4): 3085—3095
[25] Lee K M, Bunning T J, White T J. Adv. Mater., 2012, 24(21): 2839—2843
[26] Ahn1 S K, Rajeswari M. Kasi R M. Adv. Funct. Mater., 2011, 21(22): 4543—4549
[27] Li J, Viveros J, Wrue M, Anthamatten M. Adv. Mater., 2007, 19(19): 2851—2855
[28] Li J H, Lewis C L, Chen D L, Anthamatten M. Macromolecules, 2011, 44(13): 5336—5343
[29] Ware T, Hearon K, Lonnecker A, Wooley K L, Maitland D J, Voit W. Macromolecules, 2012, 45(2): 1062—1069
[30] Kumpfer J R, Rowan S J. J. Am. Chem. Soc., 2011, 133(32): 12866—12874
[31] Nan W J, Wang W, Gao H, Liu W G. Soft Matter, 2013, 9(1): 132—137
[32] Han Y J, Bai T, Liu Y, Zhai X Y, Liu W G. Macromol. Rapid. Commun., 2012, 33(12): 225—231
[33] Bai T, Han Y J, Zhang P, Wang W, Liu W G. Soft Matter, 2012, 8(25): 6846—6852
[34] Han X J, Dong Z Q, Fan M M, Liu Y, Li J H, Wang Y F, Yuan Q J, Li B J, Zhang S. Macromol. Rapid. Commun., 2012, 33(12): 1055—1060
[35] Lendlein A, Jiang H Y, Jünger O, Langer R. Nature, 2005, 434(7053): 879—882
[36] Wu L B, Jin C L, Sun X Y. Biomacromolecules, 2011, 12(1): 235—241
[37] Luo H S, Hu J L, Zhu Y. Mater. Lett., 2012, 89(15): 172—175
[38] Zhu Y, Hu J L, Luo H S, Young R J, Deng L B, Zhang S, Fan Y, Ye G D. Soft Matter, 2012, 8(8): 2509—2517
[39] Miller J R. J. Chem. Soc., 1960, 26(3): 1311—1317
[40] Liu G Q, Ding X B, Cao Y P, Zheng Z H, Peng Y X. Macromolecules, 2004, 37(6): 2228—2232
[41] Liu G Q, Guan C L, Xia H S, Guo F Q, Ding X B, Peng Y X. Macromol. Rapid. Commun., 2006, 27(14): 1100—1104
[42] Liu G Q, He W C, Peng Y X, Xia H S. J. Polym. Res., 2011, 18(16): 2109—2117
[43] Liu G Q, Ding X B, Cao Y P, Zheng Z H, Peng Y X. Macromol. Rapid. Commun., 2005, 26(8): 649—652
[44] Ratna D, Karger-Kocsis J. Polymer, 2011, 52(4): 1063—1070
[45] Zhang S F, Feng Y K, Zhang L, Sun J F, Xu X K, Xu Y S. J. Polym. Sci. Part A: Polym. Chem., 2007, 45(5): 768—775
[46] Feng Y K, Zhao H Y, Jiao L C, Lu J, Wang H Y, Guo J T. Adv. Technol., 2012, 23(3): 382—388
[47] Feng Y K, Zhao H Y, Zhang S F, Jiao L C, Lu J, Wang H Y, Guo J T. Macromol. Symp., 2011, 306/307(1): 18—26
[48] Li J, Liu T, Xia S, Pan Y, Zheng Z H, Ding X B, Peng Y X. J. Mater. Chem., 2011, 21(33): 12213—12217
[49] Xie T. Nature, 2010, 464: 267—270
[50] Xie T, Page K A, Eastman S A. Adv. Funct. Mater., 2011, 21(11): 2057—2066
[51] Sun L, Huang W M. Soft Matter, 2010, 6(18): 4403—4406
[52] Weber M, Stadler R. Polymer, 1988, 29(6): 1064—1070
[53] Lendlein A, Schmidt A M, Langer R. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(3): 842—847
[54] Rickert D, Lendlein A, Schmidt A M, Kelch S, Roehlke W, Fuhrmann R, Franke R P. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2003, 67B(2): 722—731
[55] Binzen E, Rickert D, Kelch S, Fuhrmann R. Clin. Hemorheol. Micro., 2003, 28(3): 183—188
[56] Binzen E, Lendlein A, Kelch S, Rickert D, Franke R P. Clin. Hemorheol. Micro., 2004, 30(3/4): 283—288
[57] Hiebl B, Rickert D, Fuhrmann R, Jung F, Lendlein A, Franke R P. Res. Soc. Symp. Proc., 2009, 1140: 143—149
[58] Rickert D, Scheithauer M O, Coskun S, Lendlein A, Kelch S, Franke R P. Biomed. Tech., 2006, 51(3): 116—124
[59] Rickert D, Scheithauer M O, Coskun S, Kelch S, Lendlein A, Franke R P. Clin. Hemorheol. Micro., 2007, 36(4): 301—311
[60] Kelch S, Steuer S, Schmidt A M, Lendlein A. Biomacromolecules, 2007, 8(3): 1018—1027
[61] Neffe A T, Hanh B D, Steuer S, Lendlein A. Adv. Mater., 2009, 21(32/33): 3394—3398
[62] Wischke C, Tripodo G, Choi N Y, Lendlein A. Macromol. Biosci., 2011, 11(12): 1637—1646
[63] Wischke C, Neffe A T, Steuer S, Engelhardt E, Lendlein A. Macromol. Biosci., 2010, 10(9): 1063—1072
[64] Kelch S, Choi N Y, Wang Z, Lendlein A. Adv. Eng. Mater., 2008, 10(5): 494—502
[65] Yakacki C M, Shandas R, Safranski D, Ortega A M, Sassaman K, Gall K. Adv. Funct. Mater., 2008, 18(16): 2428—2435
[66] Li Z H, Pan Y, Zhang P, Zheng Z H, Ding X B, Peng Y X. e-Polymers, 2009, no. 025
[67] Wornyo E, Gall K, Yang F Z, King W. Polymer, 2007, 48(11): 3213—3225
[68] Yakacki C M, Willis S, Luders C, Gall K. Adv. Eng. Mater., 2008, 10(1/2): 112—119
[69] Yakacki C M, Shandas R, Lanning C, Rech B, Eckstein A, Gall K. Biomaterials, 2007, 28(14): 2255—2263
[70] Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A. Adv. Funct. Mater., 2009, 19(1): 102—108
[71] Li J, Liu T, Pan Y, Xia S, Zheng Z H, Ding X B, Peng Y X. Macromol. Chem. Phys., 2012, 213(21): 2246—2252
[72] Hadjichristidis N. J. Polym. Sci. Part A: Polym. Chem., 1999, 37(7): 857—871
[73] Misha M K, Kobayashi S. Star and Hyperbranched Polymers. New York: Marcel Dekker, 1999
[74] Tanaka K, Chujo Y. J. Mater. Chem., 2012, 22(5): 1733—1746
[75] Cordes D B, Lickiss P D, Rataboul F. Chem. Rev., 2010, 110(4): 2081—2173
[76] Xu J W, Song J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(17): 7652—7657
[77] Mya K Y, Gose H B, Pretsch T, Bothe M, He C B. J. Mater. Chem., 2011, 21(13): 4827—4836
[78] Bothe M, Mya K Y, Lin E M J, Yeo C C, Lu X H, He C B, Pretsch T. Soft Matter, 2012, 8(4): 965—972
[79] Alteheld A, Feng Y K, Kelch S, Lendlein A. Angew. Chem. Int. Ed., 2005, 44(8): 1188—1192
[80] Lendlein A, Zotzmann J, Feng Y K, Alteheld A, Kelch S. Biomacromolecules, 2009, 10(4): 975—982
[81] Zotzmann J, Behl M, Hofmann D, Lendlein A. Adv. Mater., 2010, 22(31): 3424—3429
[82] Zotzmann J, Behl M, Feng Y, Lendlein A. Adv. Funct. Mater., 2010, 20(20): 3583—3594
[83] Niu Y, Zhang P, Zhang J J, Xiao L P, Yang K K, Wang Y Z. Polym. Chem., 2012, 3(9): 2508—2516
[84] Liu T, Li J, Pan Y, Zheng Z H, Ding X B, Peng Y X. Soft Matter, 2011, 7(5): 1641—1643
[85] Doi M, Edwards S F. The Theory of Polymer Dynamic. Oxford: Clarendon, 1986
[86] Milner S T, Mcleish T C B. Macromolecules, 1997, 30(7): 2159—2166.
[87] Blottiere B, Hakiki A, Young R N, Milner S T, McLeish T C B. Macromolecules, 1998, 31(26): 9295—9304
[88] Xue L, Dai S Y, Li Z. J. Mater. Chem., 2012, 22(15): 7403—7411
[89] Xue L, Dai S Y, Li Z. Biomaterials, 2010, 31(32): 8132—8140
[90] Xue L, Dai S Y, Li Z. Macromolecules, 2009, 42(4): 964—972
[91] Feng Y K, Zhang S F, Zhang L, Guo J T, Xu Y S. Polym. Adv. Technol., 2011, 22(12): 2430—2438
[92] Miaudet P, Derré A, Maugey M, Zakri C, Piccione P M, Inoubli R, Poulin P. Science, 2007, 318(5854): 1294—1296
[93] Luo X F, Mather P T. Soft Matter, 2010, 6(10): 2146—2149
[94] Agarwal P, Chopra M, Archer L A. Angew. Chem. Int. Ed., 2011, 50(37): 8670—8673
[95] Madbouly S A, Lendlein A. Adv. Polym. Sci., 2010, 226: 41—95
[96] Liu Y P, Gall K, Dunn M L, McCluskey P. Mech. Mater., 2004, 36(10): 929—940
[97] Zhang Y M, Wang Q H, Wang C, Wang T M. J. Mater. Chem., 2011, 21(25): 9073—9078
[98] Kushner A M, Vossler J D, Williams G A, Guan Z B. J. Am. Chem. Soc., 2009, 131(25): 8766—8768
[99] Tsui N T, Torun L, Pate B D, Paraskos A J, Swager T M, Thomas E L. Adv. Funct. Mater., 2007, 17(10): 1595—1602
[100] Tsui N T, Paraskos A J, Torun L, Swager T M, Thomas E L. Macromolecules, 2006, 39(9): 3350—3358
[101] Zhang S, Yu Z J, Govender T, Luo H Y, Li B J. Polymer, 2008, 49(15): 3205—3210
[102] Yu Z J, Liu Y, Fan M M, Meng X W, Li B J, Zhang S. J. Polym. Sci. Part B: Polym. Phys., 2010, 48(9): 951—957
[103] Luo H Y, Liu Y, Yu Z J, Zhang S, Li B J. Biomacromolecules, 2008, 9(10): 2573—2577
[104] Luo H Y, Fan M M, Yu Z J, Meng X W, Li B J, Zhang S. Macromol. Chem. Phys., 2009, 210(8): 669—676
[105] Luo H Y, Meng X W, Cheng C, Dong Z Q, Zhang S, Li B J. J. Phys. Chem. B, 2010, 114(13): 4739—4745
[106] Fan M M, Yu Z J, Luo H Y, Zhang S, Li B J. Macromol. Rapid Commun., 2009, 30(11): 897—903
[1] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[2] 杜海燕, 雷霞, 许玉玉, 梁镇海, 王永洪. 聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为[J]. 化学进展, 2016, 28(11): 1648-1657.
[3] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[4] 武元鹏, 林元华, 周莹, 左芳, 郑朝晖, 丁小斌. 光致型形状记忆高分子材料[J]. 化学进展, 2012, (10): 2004-2010.
[5] 王威, 王晓振, 程伏涛, 俞燕蕾, 朱玉田. 基于光响应高分子材料的柔性执行器件[J]. 化学进展, 2011, 23(6): 1165-1173.
[6] 张海璇,孟旬,李平. 光和温度刺激响应型材料*[J]. 化学进展, 2008, 20(05): 657-672.