English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 673-683 DOI: 10.7536/PC180101 前一篇   后一篇

• 综述 •

环糊精超分子凝胶的构筑及其功能

赵倩, 李盛华, 刘育*   

  1. 南开大学化学系 元素有机化学国家重点实验室 天津化学化工协同创新中心 天津 300071
  • 收稿日期:2018-01-05 修回日期:2018-02-10 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 刘育e-mail:yuliu@nankai.edu.cn E-mail:yuliu@nankai.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21432004,91527301)和中国博士后科学基金项目(No.2016M591380)资助

Construction and Functions of Supramolecular Cyclodextrin Gels

Qian Zhao, Shenghua Li, Yu Liu*   

  1. State Key Laboratory of Elemental-Organic Chemistry, Collaborative Innovation Center of Chemistry Science and Engineering, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2018-01-05 Revised:2018-02-10 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21432004, 91527301) and the China Postdoctoral Science Foundation(No. 2016M591380).
环糊精作为一种具有良好的水溶性和生物兼容性的大环主体,因其对无机、有机和生物底物的特异性键合而倍受关注。凝胶材料则凭借其结合了固体弹性以及液体流动性等特性而有着广泛的应用。环糊精超分子凝胶融合了环糊精和凝胶的优势,在软材料领域研究中有着特殊的重要意义。本文从环糊精凝胶的构筑出发,从氢键、主-客体键合和离子相互作用等方面对其形成超分子凝胶的驱动力进行讨论,并对超分子凝胶在生物、检测、吸附及智能材料(包括滑动环类材料)领域的最新研究进展进行综述,为构筑新型环糊精超分子凝胶、开发该类凝胶的新功能提供参考。最后,对环糊精超分子凝胶的应用前景进行了展望。
Cyclodextrin, as a good water-soluble and biocompatible macrocycle, has attracted much attention due to its specific bonding with inorganic/organic/biological substrates. While combining the advantages of solid's elasticity and liquid's mobility, the gels are widely applied in many fields. The supramolecular gels based on cyclodextrin stand out in the field of soft materials due to the integration of the advantages of cyclodextrin and gel, Therefore, this review embarking upon the construction of cyclodextrin gels, discusses the driving force of their formation such as hydrogen bonding, host-guest bonding and ion interaction. Then the latest research on the functions of supramolecular cyclodextrin gels including biological/sensing/adsorption/smart materials including sliding materials are reviewed, which provide an outlook for the construction and functions of new cyclodextrin gels. Finally, the development and application of cyclodextrin gel materials are discussed and prospected.
Contents
1 Introduction
2 Construction of cyclodextrin supramolecular gels
2.1 Hydrogen bonding
2.2 Host-guest complexation
2.3 Ionic interaction
3 Application of cyclodextrin supramolecular gels
3.1 Biological applications
3.2 Sensors
3.3 Removal of pollutants in water environment
3.4 Smart materials
4 Conclusion

中图分类号: 

()
[1] Lai W F, Rogach A L, Wong W T. Chem. Soc. Rev., 2017, 46:6379.
[2] Prochowicz D, Kornowicz A, Lewiński J. Chem. Rev., 2017, 117:13461.
[3] Varan G, Varan C, Erdogar N, Hincal A A, Bilensoy E. Int. J. Pharm., 2017, 531:457.
[4] Nakahata M, Takashima Y, Harada A. Chem. Pharm. Bull., 2017, 65:330.
[5] Kolesnichenko I V, Anslyn E V. Chem. Soc. Rev., 2017, 46:2385.
[6] Liu B W, Zhou H, Zhou S T, Yuan J Y. Eur. Polym. J., 2015, 65:63.
[7] Schmidt B V K J, Barner-Kowollik C. Angew. Chem. Int. Ed., 2017, 56:8350.
[8] Szente L, Fenyvesi É. Struct. Chem., 2017, 28:479.
[9] Hu X, Gao J B, Luo Y, Wei T, Dong Y S, Chen G J, Chen H. Macromol. Rapid Commun., 2017, 38:1700434.
[10] Ma X E, Zhou N Z, Zhang T Z, Hu W J, Gu N. Mater. Sci. Eng. C, 2017, 73:357.
[11] Wang J, Li Q T, Yi S J, Chen X. Soft Matter, 2017, 13:6490.
[12] Xie F, Ouyang G H, Qin L, Liu M H. Chem. Eur. J., 2016, 22:18208.
[13] Li Y, Li J Z, Zhao X, Yan Q, Gao Y X, Hao J, Hu J, Ju Y. Chem. Eur. J., 2016, 51:18435.
[14] Ma M F, Luan T X, Yang M M, Liu B, Wang Y J, An W, Wang B, Tang R P, Hao A Y. Soft Matter, 2017, 13:1534.
[15] Xiao Y Y, Gong X L, Kang Y, Jiang Z C, Zhang S, Li B J. Chem. Commun., 2016, 52:10609.
[16] Li Z Q, Zhang Y M, Wang H Y, Li H, Liu Y. Macromolecules, 2017, 50:1141.
[17] Han S, Wang T, Yang L, Li B. Int. J. Biol. Macromol., 2017, 105:377.
[18] Tong L, Yang Y J, Luan X Y, Shen J L, Xin X. Colloids Surf. A, 2017, 522:470.
[19] Kong L, Zhang F, Xing P X, Chu X X, Hao A Y. Colloids Surf. A, 2017, 522:577.
[20] Yin L, Xu S X, Feng Z J, Deng H Z, Zhang J H, Gao H J, Deng L D, Tang H, Dong A J. Biomater. Sci., 2017, 5:698.
[21] Dai L, Liu K F, Wang L Y, Liu J, He J, Liu X Y, Lei J D. Mater. Sci. Eng., C, 2017, 76:966.
[22] Mu S S, Liang Y Y, Chen S J, Zhang L M, Liu T. Mater. Sci. Eng. C, 2015, 50:294.
[23] Zhang W, Zhou X Y, Liu T, Ma D, Xue W. J. Mater. Chem. B, 2015, 3:2127.
[24] Wang X Y, Wang C P, Zhang Q, Cheng Y Y. Chem. Commun., 2016, 52:978.
[25] Seki T, Namiki M, Egawa Y, Miki R, Juni K, Seki T. Materials, 2015, 8:1341.
[26] Tsuchido Y, Fujiwara S, Hashimoto T, Hayashita T. Chem. Pharm. Bull., 2017, 65:318.
[27] Matsumoto K, Kawamura A, Miyata T. Macromolecules, 2017, 50:2136.
[28] Massaro M, Colletti C G, Lazzara G, Guernelli S, Noto R, Riela S. ACS Sustain. Chem. Eng., 2017, 5:3346.
[29] Duan G J, Zhong Q Q, Bi L, Yang L, Liu T H, Shi X N, Wu W S. Polymers, 2017, 9:201.
[30] Takashima Y, Harada A. J. Incl. Phenom. Macrocycl. Chem., 2017, 88:85.
[31] Harada A. Polym. J., 1994, 26:1019.
[32] Zhao Q, Chen Y, Liu Y. Chin. Chem. Lett., 2018, 29:84.
[33] Ito K. Chem. Pharm. Bull., 2017, 65:326.
[34] Li Z, Zheng Z, Su S, Yu L, Wang X L. Macromolecules, 2016, 49:373.
[35] Yasumoto A, Gotoh H, Gotoh Y, Imran A B, Hara M, Seki T, Sakai Y, Ito K, Takeoka Y. Macromolecules, 2017, 50:364.
[36] Koyanagi K, Takashima Y, Yamaguchi H, Harada A. Macromolecules, 2017, 50:5695.
[37] Uchida W, Yoshikawa M, Seki T, Miki R, Seki T, Fujihara T, Ishimaru Y, Egawa Y. J. Incl. Phenom. Macrocycl. Chem., 2017, 89:281.
[38] Nishida K, Tamura A, Yui N. Macromolecules, 2016, 49:6021.
[39] Yu H S, Liu Y F, Yang H Y, Peng K, Zhang X Y. Macromol. Rapid Commun., 2016, 37:1723.
[40] Araki J, Honda Y, Kohsaka Y. Polymer, 2017, 125:134.
[41] Jang K, Iijima K, Koyama Y, Uchida S, Asai S, Takata T. Polymer, 2017, 128:379.
[42] Ohmori K, Abu Bin I, Seki T, Liu C, Mayumi K, Ito K, Takeoka Y. Chem. Commun., 2016, 52:13757.
[43] Iijima K, Aoki D, Otsuka H, Takata T. Polymer, 2017, 128:392.
[44] Nakahata M, Mori S, Takashima Y, Yamaguchi H, Harada A. Chem, 2016, 1:766.
[45] Murakami T, Schmidt B V K J, Brown H R, Hawker C J. J. Polym. Sci. Part A:Polym. Chem., 2017, 55:1156.
[46] Kali G, Eisenbarth H, Wenz G. Macromol. Rapid Commun., 2016, 37:67.
[47] Rodell C B, Dusaj N N, Highley C B, Burdick J A. Adv. Mater., 2016, 28:8419.
[48] Lin Q M, Yang Y M, Hu Q, Guo Z, Liu T, Xu J K, Wu J P, Kirk T B, Ma D, Xue W. Acta Biomater., 2017, 49:456.
[49] Liu X, Chen X, Chua M X, Li Z, Loh X J, Wu Y L. Adv. Healthcare Mater., 2017, 6:1700159.
[50] Hörning M, Nakahata M, Linke P, Yamamoto A, Veschgini M, Kaufmann S, Takashima Y, Harada A, Tanaka M. Sci. Rep., 2017, 7:7660.
[51] Yi P P, Wang Y F, He P X, Zhan Y, Sun Z G, Li Y L, Zhang Y H. Mater. Sci. Eng. C, 2017, 78:773.
[52] Wang X, Wang J, Yang Y Y, Yang F, Wu D C. Polym. Chem., 2017, 8:3901.
[53] Sheng J, Wang Y, Xiong L, Luo Q J, Li X D, Shen Z Q, Zhu W P. Polym. Chem., 2017, 8:1680.
[54] Flores C, Lopez M, Tabary N, Neut C, Chai F, Betbeder D, Herkt C, Cazaux F, Gaucher V, Martel B, Blanchemain N. Carbohydr. Polym., 2017, 173:535.
[55] Morelli L, Cappelluti M A, Ricotti L, Lenardi C, Gerges I. Macromol. Biosci., 2017, 17:1700103.
[56] Sun N, Wang T, Yan X F. Carbohydr. Polym., 2017, 172:49.
[57] Zhao Q, Chen Y, Li S H, Liu Y. Chem. Commun., 2018, 54:200.
[58] Parsamanesh M, Tehrani A D, Mansourpanah Y. Eur. Polym. J., 2017, 92:126.
[59] Topuz F, Uyar T. J. Hazard. Mater., 2017, 335:108.
[60] Kono H, Onishi K, Nakamura T. Carbohydr. Polym., 2013, 98:784.
[61] Wu Y C, Qi H J, Shi C, Ma R X, Liu S X, Huang Z H. RSC Adv., 2017, 7:31549.
[62] Heydari A, Sheibani H. RSC Adv., 2015, 5:82438.
[63] Huang Z H, Wu Q L, Liu S X, Liu T, Zhang B. Carbohydr. Polym., 2013, 97:496.
[64] Varghese L R, Das N. Ecol. Eng., 2015, 85:201.
[65] Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A. Nat. Commun., 2012, 3:1270.
[66] Yang Q F, Wang P, Zhao C Z, Wang W Q, Yang J F, Liu Q. Macromol. Rapid Commun., 2017, 38:1600741.
[67] Hao X, Xu M M, Hu J, Yan Q. J. Mater. Chem. C, 2017, 5:10549.
[68] Katsuno C, Konda A, Urayama K, Takigawa T, Kidowaki M, Ito K. Adv. Mater., 2013, 25:4636.
[69] Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Macromolecules, 2017, 50:4144.
[70] Nakamura T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Nat. Commun., 2014, 5:4622.
[71] Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, Harada A. Macromolecules, 2015, 48:732.
[72] Song L X, Yang J, Bai L, Du F Y, Chen J, Wang M. Inorg. Chem., 2011, 50:1682.
[73] Dang Z, Song L X, Yang J, Chen J, Teng Y. Dalton Trans., 2012, 41:3006.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[4] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[5] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[6] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[7] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[8] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[9] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[10] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[11] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[12] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[15] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.