English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 999-1011 DOI: 10.7536/PC120949 前一篇   后一篇

• 综述与评论 •

可逆Diels-Alder反应

熊兴泉*, 江云兵   

  1. 华侨大学材料科学与工程学院 福建省高校功能材料重点实验室 厦门 361021
  • 收稿日期:2012-10-01 修回日期:2013-03-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 熊兴泉 E-mail:xxqluli@hqu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21004024);福建省自然科学基金项目(No. 2011J01046);福建省“高校新世纪优秀人才支持计划”(2012FJ-NCET-ZR03);福建省“高校杰出青年科研人才培育计划”(11FJPY02)和中央高校基本科研业务费“福建省杰出青年基金培育计划专项”基金资助

Reversible Diels-Alder Reaction

Xiong Xingquan*, Jiang Yunbing   

  1. The Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
  • Received:2012-10-01 Revised:2013-03-01 Online:2013-06-25 Published:2013-05-02

通过高效的反应精确合成功能分子已成为现代化学发展的趋势之一。基于呋喃/马来酰亚胺 (MI) 之间的Diels-Alder(D-A)反应作为一种高效的和高选择性的点击反应, 克服了铜催化的叠氮/炔之间的1,3-偶极环化加成(CuAAC)反应中引起的金属污染等缺点, 为生物医药载体、功能性材料的制备提供更可行的途径。同时, 呋喃/MI 之间的D-A反应具备原料易得、反应条件温和及易发生retro D-A(rD-A)反应等优点, 在制备响应性材料领域备受关注。本文综述了近年基于呋喃/MI的可逆D-A反应在响应性聚合物合成、智能材料、生物分子及表面修饰等方面的应用, 并展望了D-A反应的发展前景。

Synthesis of well-defined functional molecules through highly effective reactions has been one of development tendencies of modern chemistry. Diels-Alder (D-A) reaction between furan and maleimide (MI) derivatives as an important reaction of click chemistry provides a possible synthetic method for biomedicine carriers and functional materials, which overcomes the disadvantage of using toxic heavy metal in the copper catalyzed Huisgen type (3+2) dipolar cycloaddition reaction (CuAAC). In addition, the furan/MI D-A reaction has the following advantages, such as easily availability, mild reaction condition and thermal reversibility (retro Diels-Alder, rD-A), so it has been widely used to prepare environmentally responsive materials. In this paper, the applications of furan/MI D-A reaction in preparation of responsive polymers, smart materials, biomolecules and surface modification are emphasized. Furthermore, the prospects of D-A click reaction are also discussed. Contents
1 Introduction
2 Synthesis of topological polymers via D-A reaction
2.1 Synthesis of linear polymers via D-A reaction
2.2 Synthesis of star polymers via D-A reaction
3 Synthesis of self-repairing materials via D-A reaction
4 Synthesis of smart hydrogel via D-A reaction
5 Synthesis of smart materials via D-A reaction
6 Modification of biomacromolecules via D-A reaction
7 Surface modification via D-A reaction
8 Conclusions

中图分类号: 

()

[1] Diels O, Alder K. Justus Liebigs Ann. Chem., 1928, 460: 98-122
[2] Moses J, Moorhouse A. Chem. Soc. Rev., 2007, 36: 1249-1262
[3] Kolb H C, Sharpless K B. Drug Discovery Today, 2003, 8: 1128-1137
[4] Tornøe C W, Christensen C, Meldal M. J. Org. Chem., 2002, 67: 3057-3064
[5] Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. Angew. Chem. Int. Ed., 2002, 41: 2596-2599
[6] Morten M, Christian W T. Chem. Rev., 2008, 108: 2952-3015
[7] Wang Q, Hawker C. Chem. Asian J., 2011, 6: 2568-2569
[8] 熊兴泉 (Xiong X Q), 蔡雷 (Cai L), 唐忠科 (Tang Z K). 有机化学 (Chinese Journal of Organic Chemistry), 2012, 32: 1410-1428
[9] Wang Q, Chan T R, Hilgraf R, Fokin V V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192-3193
[10] Gierlich J, Burley G A, Gramlich P M E, Hammond D M, Carell T. Org. Lett., 2006, 8: 3639-3642
[11] Lutz J F. Angew. Chem. Int. Ed., 2008, 47: 2182-2184
[12] Qin A J, Tang L, Lam J W Y. Adv. Funct. Mater., 2009, 19: 1891-1900
[13] Lallana E, Fernandez M E, Riguera, R. J. Am. Chem. Soc., 2009, 131: 5748-5750
[14] Jim C K W, Qin A, Lam J W Y. Adv. Funct. Mater., 2010, 20: 1319-1328
[15] Tasdelen M A. Polym. Chem., 2011, 2: 2133-2145
[16] Hizal G, Tunca U, Sanyal A. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 4103-4120
[17] Taylor M T, Blackman M L, Dmitrenko O, Fox J M. J. Am. Chem. Soc., 2011, 133: 9646-9649
[18] Li Z B, Cai H C, Hassink M, Blackman M L, Brown R C D, Conti P S, Fox J M. Chem. Commun., 2010, 8043-8045
[19] Karver M R, Weissleder R, Hilderbrand S A. Bioconjugate Chem., 2011, 22: 2263-2270
[20] Inglis A J, Sinnwell S, Stenzel M H, Barner-Kowollik C. Angew. Chem. Int. Ed., 2009, 48: 2411-2414
[21] Durmaz H, Colakoclu B, Tunca U, Hizal G. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 1667-1675
[22] Gacal B, Durmaz H, Tasdelen M A, Hizal G, Tunca U, Yagci Y, Demirel A L. Macromolecules, 2006, 39: 5330-5336
[23] Xiong X Q. Aust. J. Chem., 2009, 62: 1371-1377
[24] 熊兴泉 (Xiong X Q). 有机化学 (Chinese Journal of Organic Chemistry), 2010, 30: 307-310
[25] Xiong X Q, Xu Y H. Polym. Bull., 2010, 65: 455-463
[26] Xiong X Q, Chen Y M. Eur. Polym. J., 2012, 48: 569-579
[27] Ripoll J L, Rouessac A, Rouessac F, Tetrahedron, 1978, 34: 19-40
[28] Szalai M L, McGrath D V, Wheeler D R, Zifer T, McElhanon J R. Macromolecules, 2007, 40: 818-823
[29] Robertson A, Philp D, Spencer N, Tetrahedron, 1999, 55: 11365-11384
[30] McElhanon J R, Wheeler D R. Org. Lett., 2001, 3: 2681-2683
[31] Chujo Y, Sada K, Saegusa T. Macromolecules, 1990, 23: 2636-2641
[32] Kose M M, Yesilbag G, Sanyal A. Org. Lett., 2008, 10: 2353-2356
[33] Goussé C, Gandini A, Hodge P. Macromolecules, 1998, 31: 314-421
[34] Gheneim R, Berumen C P, Gandini A. Macromolecules, 2002, 35: 7246-7253
[35] Franc G, Kakkar A K. Chem. Eur. J., 2009, 15: 5630-5639
[36] Palomo J M. Eur. J. Org. Chem., 2010, 6303-6314
[37] Sanyal A. Macromol. Chem. Phys., 2010, 211: 1417-1425
[38] Grigoras M, Sava M, Colotin G, Simionescu C I. J. Appl. Polym. Sci., 2008, 107: 846-853
[39] Gandini A, Coelho D, Gomes M, Reis B, Silvestre A. J. Mater. Chem., 2009, 19: 8656-8664
[40] Kamahori K, Tada S, Ito K, Itsuno S. Macromolecules, 1999, 32: 541-547
[41] Goussé C, Gandini A. Polym. Inter., 1999, 48: 723-731
[42] Chou C I, Liu Y L. J. Polym. Sci. Part A: Poly. Chem., 2008, 46: 6509-6517
[43] Gandini A, Silvestre A J D, Coelho D. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 2053-2056
[44] Gandini A, Silvestre A J D, Coelho D. Poly. Chem., 2011, 2: 1713-1719
[45] Vilela C, Cruciani L, Silvestre A J D, Gandini A. Macromol. Rapid. Commun., 2011, 32: 1319-1323
[46] Teramoto N, Arai Y, Shibata M. Carbohydr. Polym., 2006, 64: 78-84
[47] Teramoto N, Niwa M, Shibata M. Materials, 2010, 3: 369-385
[48] Jiang X B, Zhu W, Yan Y C, Chen Y M, Xi F. React. Funct. Polym., 2011, 71: 843-848
[49] Aumsuwan N, Urban M W. Polymer, 2009, 50: 33-36
[50] Gok O, Durmaz H, Ozdes1 E S, Hizal G, Tunca U, Sanyal A. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 2546-2556
[51] Liu Y L, Chen Y W. Macromol. Chem. Phys., 2007, 208: 224-232
[52] Tian Q, Yuan Y C, Rong M Z, Zhang M Q. J. Mater. Chem., 2009, 19: 1289-1296
[53] Peterson A M, Jensen R E, Palmese G R. ACS Appl. Mater. Interfaces, 2010, 2: 1141-1149
[54] Zhang Y C, Broekhuis A A, Picchioni F. Macromolecules, 2009, 42: 1906-1912
[55] Yoshie N, Watanabe M, Araki H, Ishida K. Polym. Degrad. Stab., 2010, 95: 826-829
[56] Park J S, Darlington T, Starr A F, Takahashi K, Riendeau J, Hahn H T. Compos. Sci. Technol., 2010, 70: 2154-2159
[57] Weizman H, Nielsen C, Weizman O S, Nemat-Nasser S. J. Chem. Educ., 2011, 88: 1137-1140
[58] Magana S, Zerroukhi A, Jegat C, Mignard N. React. Funct. Polym., 2010, 70: 442-448
[59] Imbesi P M, Fidge C, Raymond J E, Cauët S, Wooley L. ACS Macro Lett., 2012, 1: 473-477
[60] Adzima B J, Aguirre H A, Kloxin C J, Scott T F, Bowman C N. Macromolecules, 2008, 41: 9112-9117
[61] Wei H L, Yang Z, Zheng L W, Shen Y M. Polymer, 2009, 50: 2836-2840
[62] 魏宏亮 (Wei H L), 杨哲 (Yang Z), 楚晖娟 (Chu H J), 朱靖 (Zhu J), 李志成 (Li Z C). 高分子通报 (Chin. Polym. Bull. ), 2010, 5: 50-54
[63] Wei H L, Yang Z, Chen Y, Chu H J, Zhu J, Li Z C. Eur. Polym. J., 2010, 46: 1032-1039
[64] Wei H L, Yang Z, Chen Y, Chu H J, Zhu J, Li Z C, Cui J S. Polymer, 2010, 51: 1694-1702
[65] Wei H L, Yang J, Chu H J, Yang Z, Ma C C, Yao K. J. Appl. Polym. Sci., 2011, 120: 974-980
[66] Wei H L, Yao K, Yang Z, Chu H J, Zhu J, Ma C C, Zhao Z X. Macromol. Res., 2011, 19: 294-299
[67] Nimmo C M, Owen S C, Shoichet M S. Biomacromolecules, 2011, 12: 824-830
[68] Kavitha A A, Singha N K. Macromolecules, 2010, 43: 3193-3205
[69] Deze T, Riva R, Raquez J M, Dubois P, Jerome C, Alexandre M. Macromol. Rapid. Commun., 2011, 32: 1264-1269
[70] Raquez J M, Vanderstappen S, Meyer F, Verge P, Alexandre M, Thomassin J M, Jérme C, Dubois P. Chem. Eur. J., 2011, 17: 10135-10143
[71] Toncelli C, Reus D C D, Picchioni F, Broekhuis A A. Macromol. Chem. Phys., 2012, 213: 157-165
[72] Zhang J J, Niu Y, Huang C L, Xiao L P, Chen Z T, Yang K K, Wang Y Z. Polym. Chem., 2012, 3: 1390-1393
[73] Tona R, Häner R. Bioconjugate Chem., 2005, 16: 837-842
[74] Hill K W, Taunton-Rigby J, Carter J D, Kropp E, Vagle K. J. Org. Chem., 2001, 66: 5352-5358
[75] Chen Y X, Triola G, Waldmann H. Acc. Chem. Res., 2011, 44: 762-773
[76] Steven V, Graham D. Org. Biomol. Chem., 2008, 6: 3781-3787
[77] Marchan V, Ortega S, Pulido D, Pedroso E, Grandas A. Nucleic Acids Res., 2006, 34: art. no. e24
[78] Lu K, Duan Q P, Ma L, Zhao D X. Bioconjugate Chem., 2010, 21: 187-202
[79] Shi M, Wosnick J H, Ho K, Keating A, Shoichet M S. Angew. Chem. Int. Ed., 2007, 46: 6126-6131
[80] El-Sagheer A H, Cheong V V, Brown T. Org. Biomol. Chem., 2011, 9: 232-235
[81] Zhu J, Kell A J, Workentin M S. Org. Lett., 2006, 8: 4993-4996
[82] Costanzo P J, Beyer F L. Macromolecules, 2007, 40: 3996-4001
[83] Bakhtiari A B S, Hsiao D, Jin G X, Gates B D, Branda N R. Angew. Chem. Int. Ed., 2009, 48: 4166-4169

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[5] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[6] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[7] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[8] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[9] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[10] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[11] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[12] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[13] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[14] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[15] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
阅读次数
全文


摘要

可逆Diels-Alder反应