English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 750-756 DOI: 10.7536/PC170334 前一篇   后一篇

• 综述 •

光响应性微凝胶的分子设计和智能材料构筑

王平, 杨巧凤, 赵传壮*   

  1. 宁波大学材料科学与化学工程学院 宁波市特种高分子材料制备与应用技术重点实验室 宁波 315211
  • 收稿日期:2017-03-21 修回日期:2017-05-24 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 赵传壮 E-mail:zhaochuanzhuang@nbu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21604044),宁波市自然科学基金项目(No.2015A610020,2016A610047)和宁波大学王宽诚幸福基金资助

Molecular Design and Intelligent Material Construction of Light-Responsive Microgel

Ping Wang, Qiaofeng Yang, Chuanzhuang Zhao*   

  1. Faculty of Materials Science and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo 315211, China
  • Received:2017-03-21 Revised:2017-05-24 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21604044),the Ningbo Natural Science Foundation (No.2015A610020,2016A610047) and the K.C.Wong Magna Fund in Ningbo University.
微凝胶能够在外界刺激下改变自身尺寸,是一类重要的智能材料构筑基元。光刺激具有可远程控制、能快速切换等特点,在刺激响应性材料的设计中受到了广泛关注。将光刺激响应性基元引入到微凝胶体系,可以得到一系列具有重要应用前景的智能材料。本文综述了近年来光响应微凝胶的研究进展,总结了赋予微凝胶光响应性的四种分子设计,包括光致异构化型、光致生热型、光致(解)交联型、光致生酸型;介绍了光响应微凝胶在调光材料、药物控释、信息显示和自修复凝胶等领域的应用;展望了该领域的研究方向、发展和应用前景。
Microgel can change its size under external stimuli, manifesting itself an important building block of intelligent materials. Because light stimulus enables remote control and rapid shifting, photo-responsive materials have drawn great attention of scientists. Introducing photo-responsiveness into microgel has greatly broadened the potential of applications of microgel. This review summarizes recent research progress on light-responsive microgel. Four types of light-responsive microgel are elaborated, including photo-isomerization, photo-thermal, photo-(de)crosslinking, and photo-acidifying. Also, a wide range of applications of light-responsive microgel are reviewed, including light-tuning, drug controlled releasing, information displaying and self-healing hydrogel. At last, a brief outlook on the future development of this field is presented.
Contents
1 Introduction
2 Molecular design of photo-responsive microgel
2.1 Photo-isomerization microgel

中图分类号: 

()
[1] Saunders B R, Vincent B. Adv. Colloid Interface Sci., 1999, 80:1.
[2] Lyon L A, Meng Z Y, Singh N, Sorrell C D, John A S. Chem. Soc. Rev., 2009, 38:865.
[3] Lyon L A, Fernandeznieves A. Annu. Rev. Phys. Chem., 2012, 63:25.
[4] 陆晨(Lu C), 查刘生(Zha L S). 功能高分子学报(Journal of Functional Polymers), 2012, 25:211.
[5] Zhang J T, Bhat R, Jandt K D. Acta Biomater., 2009, 5:488.
[6] Pelton R. Adv. Colloid Interface Sci., 2000, 85:1.
[7] Bhattacharya S, Eckert F, Boyko V, Pich A. Small, 2007, 3:650.
[8] Kokufuta E, Sato S, Kokufuta K. Langmuir, 2012, 29:15442.
[9] Wu Y D, Wiese S, Balaceanu A, Richtering W, Pich A. Langmuir, 2014, 30:7660.
[10] Shi S, Wang Q M, Wang T, Ren S P, Gao Y, Wang N. J. Phys. Chem. B, 2014, 118:7177.
[11] Hendrickson G R,Michael H S,South A B, Lyon L A. Adv. Funct. Mater., 2010, 20:1697.
[12] Li M H, Keller P. Soft Matter, 2009, 5:927.
[13] 童真(Tong Z). 高分子通报(Polymer Bulletin), 1993, 10:91.
[14] Pelton R H, Chibante P. Colloid Surfaces, 1986, 20:247.
[15] Plamper F A, Richtering W. Acc. Chem. Res., 2017, 50:13.
[16] Klinger D, Landfester K. Polymer, 2012, 53:5209.
[17] Dai Z J, Ngai T. J. Polym. Sci. Part A:Polym. Chem., 2013, 51:2995.
[18] Hu Z B, Lu X H, Gao J. Adv. Mater., 2001, 13:1708.
[19] Liu Y, Zhang Y J, Guan Y. Chem. Commun., 2009, 52:1867.
[20] Liu R X, Milani A H, Freemont T J, Saunders B R. Soft Matter, 2011, 7:4696.
[21] Sivakumaran D, Maitland D, Hoare T. Biomacromolecules, 2011, 12:4112.
[22] Zhang J F, Chen D D, Li Y, Sun J Q. Polymer, 2013, 54:4220.
[23] Ngai T, Behrens S H, Auweter H. Chem. Commun., 2005, 48:331.
[24] 董旭(Dong X), 刘晓云(Liu X Y), 查刘生(Zha L S).化学进展(Progress in Chemistry), 2013, 25:2038.
[25] Zhao C Z, Yuan G C, Han C C. Macromolecules, 2012, 45:9468.
[26] Zhao C Z, Yuan G C, Jia D, Han C C. Soft Matter, 2012, 8:7036.
[27] Zhao C Z, Zhang J W, Yuan G C, Han C C. RSC. Adv., 2013, 3:9645.
[28] 王东瑞(Wang D R), 王晓工(Wang X G). 化工学报(CIESC Journal), 2010, 61:1713.
[29] Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537:179.
[30] Zhang H J, Zhang J M, Tong X, Ma D L, Zhao Y. Macromol. Rapid Commun., 2013, 34:1575.
[31] Wang X T, Yang Y K, Yang Z F, Liao Y G, Zhang W, Xie X. Chinese Sci. Bull., 2010, 55:3441.
[32] Iwaso K, Takashinma Y, Harada A. Nat. Chem., 2016, 8:625.
[33] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat. Commun., 2011, 3:603.
[34] Harada A, Takashima Y, Nakahata M. Acc. Chem. Res., 2014, 47:2128.
[35] Zhu L Q, Zhao C Z, Zhang J W, Gong D R. RSC Adv., 2015, 5:84263.
[36] Garcia A, Marquez M, Cai T, Rosario R, Hu Z B, Guest D, Hayes M, Vail S A, Park C D. Langmuir, 2007, 23:224.
[37] Paramonov S V, Lokshin V, Fedorova O A. J. Photochem. Photobio. C, 2011, 12:209.
[38] Zakrevskyy Y, Richter M, Zakrevska S, Lomadze N, Klitzing R V, Santer Svetlana. Adv. Funct. Mater., 2012, 22:5000.
[39] Fan K Z, Bradley M, Vincent B, Faul C F. Langmuir, 2011, 27:4362.
[40] Fan K Z, Bradley M, Vincent B. J. Colloid Interface Sci., 2012, 368:287.
[41] Schimka S, Lomadze N, Rabe M, Kopyshev A, Lehmann M, Klitzing R V, Rumyantsev M A, Kramarenko E Y, Santer S. Phys. Chem. Chem. Phys., 2017, 19:108.
[42] Zhang Q M, Li X, Islam M R, Wei M L, Serpe M J. J. Mater. Chem. C, 2014, 2:6961.
[43] Ainsa H S, Ricci M, Hilton L, Avino A, Eritja R, Keyser U F. Nano Lett., 2016, 16:4462.
[44] Li W, Guo Q C, Zhao H, Zhang L, Li J F, Gao J, Qian W Z, Li B H, Chen H W, Wang H, Dai J X, Guo Y J. Nanomedicine, 2012, 7:383.
[45] Sun J, Gui R J, Jin H, Li N, Wang X J. RSC Adv., 2016, 6:8722.
[46] Huang X H, Jian P K, EI-Sayed I H, EI-Sayed M A. Laser. Med. Sci., 2008, 23:217.
[47] Jain P K, Huang X H, EI-Sayed I H, EI-Sayed M A. Acc. Chem. Res., 2008, 41:1578.
[48] Budhlall B M, Marquez M, Velev O D. Langmuir, 2008, 24:11595.
[49] Chen Y W, Chen P J, Hu S H, Chen I W, Chen S Y. Adv. Funct. Mater., 2014, 24:451.
[50] Kim D, Kim D, Lee E, Yoon J. Biomicrofluidics, 2016, 10:014127.
[51] Gorelikov I, Field L M, Kumacheve E. J. Am. Chem. Soc., 2004, 126:15938.
[52] Cliton D J, Lyon L A. J. Am. Chem. Soc., 2003, 125:460.
[53] Li Z Q, Zhang Y M, Chen H Z, Zhao J, Liu Y. J. Org. Chem., 2013, 78:5110.
[54] Yi C L, Sun J H, Zhao D H, Hu Q, Liu X Y, Jiang M. Langmuir, 2014, 30:6669.
[55] Gong Y, Zhu A M, Zhang Q G, Liu Q L. RSC Adv., 2014, 4:9445.
[56] Yuan Q P, Gu J J, Zhao Y N, Yao L J, Guan Y, Zhang Y J. ACS Macro Lett., 2016, 5:565.
[57] George M V, Scaiano J C. J. Phys. Chem. B, 1980, 84:492.
[58] Diaspro A, Federici F, Viappiani C, Krol S, Pisciotta M. J. Phys. Chem. B, 2003, 107:11008.
[59] Gao Y F, Serpe M J. ACS Appl. Mater. Interfaces, 2014, 6:8461.
[60] Tamesue S, Abe S, Mitsumata T, Tsubokawa N, Yamauchi. J. Polym. Sci., Part A:Polym. Chem., 2016, 54:1317.
[61] Carter M C D, Sorrell C D, Serpe M J. J. Phys. Chem. B., 2011, 115:14539.
[62] Sorrell C D, Serpe M J. Adv. Mater., 2011. 23:4088.
[63] Islam M R, Johnson K C, Serpe M J. Anal. Chim. Acta, 2013, 792:110.
[64] Nishimura T, Takara M, Mukai S A, Sawada S I, Sasaki Y, Akiyoshi K. Chem. Commun., 2016, 52:1222.
[65] Hu J, Hiwatashi K, Kurokawa T, Ling S M, Wu Z L, Gong J P. Macromolecules, 2011, 44:7775.
[66] Guan Y, Zhang Y J. Soft Matter, 2011, 7:6375.
[67] Zhang X Y, Zhao C Z, Xiang N P. Macromol. Chem. Phys., 2016, 217:2139.
[68] Yang Q F, Wang P, Zhao C Z, Wang W Q, Yang J F, Liu Q. Macromol. Rapid Commun., 2017, DOI:10.1002/marc. 201600741.
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[4] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[5] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[9] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[10] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[11] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[12] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[13] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[14] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[15] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.