English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 499-518 DOI: 10.7536/PC210303 前一篇   后一篇

• 综述 •

碳点的高性能化和功能化改性:方法、特性与展望

李程浩1, 刘亚敏2, 卢彬1, 萨拉乌拉1, 任先艳1,*(), 孙亚平2,*()   

  1. 1 西南科技大学材料科学与工程学院 绵阳 621010
    2 克莱姆森大学化学学院 美国 克莱姆森 29634
  • 收稿日期:2021-03-03 修回日期:2021-04-16 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 任先艳, 孙亚平
  • 基金资助:
    西南科技大学博士启动基金(16ZX7139); 龙山人才项目(18LZX675)

Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects

Chenghao Li1, Yamin Liu2, Bin Lu1, Ulla Sana1, Xianyan Ren1(), Yaping Sun2()   

  1. 1 School of Materials Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China
    2 Department of Chemistry, Clemson University, South Carolina 29634, USA
  • Received:2021-03-03 Revised:2021-04-16 Online:2021-07-29 Published:2021-07-29
  • Contact: Xianyan Ren, Yaping Sun
  • Supported by:
    Southwest University of Science and Technology of the Startup Foundation for Doctors(16ZX7139); Longshan Talent Program(18LZX675)

碳点作为一种新型碳纳米材料,由于其出色的光学性能、低毒性、良好的生物相容性和易修饰性而被广泛应用于各个领域。为了满足不同领域的需求,几种用以调控碳点光学性能的方法已被提出,例如杂原子掺杂、半导体量子点掺杂、聚合物钝化和改性以及主-客体构建。其中,杂原子掺杂是通过单原子或多原子引入电子给体或受体改变其相邻碳原子的电子密度来增加荧光强度;半导体量子点也可与碳点进行复合提升电子分离效率而起到荧光增强的效果;就聚合物改性而言,聚合物不仅可以对碳点表面实施钝化和功能化,而且其固态(或固化)薄膜可以提供紧密的空间促进碳点表面的辐射跃迁起到荧光增强的效果。此外,由碳点-染料和多孔材料-碳点构成的两种主要的主-客体结构中,前者不仅对碳点的荧光发射强度有着促进的作用,更使得碳点具备了显著的红/近红外荧光发射性能,后者对固态发光碳点不仅提供了可能性和设计的灵活性,且为打开碳点新的应用领域提供了机会。本文将围绕四种碳点功能化的方法逐步展开讨论,并介绍相应碳点的光学性能、发光机理和潜在应用;论述功能化碳点的研究现状,并展望功能化碳点的研究方向。

Carbon dots (CDots) emerging as a nova in carbon nanomaterials are applied in various fields due to their unique optical property, low toxicity, high biocompatibility, and designable flexibility. Several strategies for controlling the optical properties of CDots have been proposed to meet demands, including heteroatom doping, semiconductor quantum dot doping, polymer passivation and modification, and host-guest constructing. Electron donors or electron acceptors are introduced by doping a single heteroatom or multiple heteroatoms to affect the electron density of neighboring carbon atoms, hence enhancing the fluorescence emission intensity. Semiconductor quantum dots can also form composites with CDots to improve the electron hole separation efficiency, thus enhancing fluorescence. In terms of polymer modification, the polymer can passivate and functionalize the CDots' surface, and (cured) polymer film can provide tight spaces to promote the radiation transition on the surface of CDots to enhance the fluorescence. Furthermore, dye-CDots and porous material-CDots represent the main host-guest structures. The former shows positive effects on the fluorescence emission of CDots, especially performing better in red/near-infrared emission. The latter is highly designable and contributes to solid-state fluorescence, paving the way for advanced applications. This review elucidates four types of functionalized CDots and summarizes their optical properties, photoluminescence mechanisms, and potential applications. Finally, the development and current situation of functionalized CDots are discussed, and the future research direction of functionalized CDots has also been prospected.

Contents

1 Introduction

2 Heteroatom-doped carbon dots

2.1 N-doped carbon dots

2.2 Other donor atom-doped carbon dots

2.3 B-doped carbon dots

2.4 Lanthanide atom-doped carbon dots

2.5 Multiple atom-codoped carbon dots

3 Semiconductor quantum dot-doped carbon dots and their composites

4 Polymer functionalized carbon dots and their composites

4.1 Polymer as a surface layer of carbon dots for fluorescence enhancement

4.2 Polymer as a matrix in carbon dot-containing composites

4.3 Polymer as a precursor of carbon dots

5 Host-guest carbon dots

5.1 Host-guest structure composed of carbon dots and dyes

5.2 Host-guest structure composed of carbon dots and porous materials

6 Summary and outlook

()
表1 部分已报到N-CDots的前驱体,结构和荧光性能
Table 1 The precursor, structure, and fluorescence performances of some reported N-CDots
图1 吡啶氮增加碳点PL强度的图示:大部分吡啶氮在碳骨架内部并形成电子陷阱,吡咯氮则分布在边缘。因此,内部结构中含有吡啶氮的N-CDots-1比N-CDots-2更容易形成电子陷阱,显示更强的PL,电子陷阱可以将电子捕获形成电子储库[36]
Fig.1 Positive effects of pyridine N on PL intensity. Most pyridine N atoms are always embedded in the center of the carbon skeleton and form a circle trap, whereas the pyrrole N atoms distributed along the edges. Thus, the N-CDots-1 containing pyridine N in internal structure is easier to form electron traps than N-CDots-2, thus showing higher PL intensity. The electron traps can trap electrons as electron reservoirs[36]. Copyright 2018, Elsevier
图2 (a)N-GDos的合成方法和N-GDots的大小随加热时间变化的示意图;(b)N-GDots的UV-vis-NIR吸收光谱随其尺寸的变化;(c)375 nm激光激发下N-GDos的PL光谱随其尺寸的变化;(d)808 nm激光激发下的N-GDots的近红外PL光谱[25]
Fig.2 (a) Schematic representation of the synthesis of N-GDos and size of the N-GDots as a function of heating time. (b) The size-dependent UV-vis-NIR absorption of N-GDots. (c) Size-dependent visible PL spectra of N-GDos excited by 375 nm laser. (d) NIR PL spectra of the N-GDots excited by 808 nm laser[25]. Copyright 2014, American Chemical Society
表2 一些S,P或B-CDots的前驱体,结构和荧光性能
Table 2 Precursor, structure, and fluorescence performance of some S-, P-, or B-CDots
图3 (a)计算模型:含有磷酸酯基或磺酸盐的并苯单元;(b)含有磷酸酯基(P-MO)或磺酸盐(S-MO)的模型的HOMO-LUMO和分子轨道图[51]
Fig.3 (a) Computational models: coronene units containing phosphate group or sulphonate group. (b) HOMO-LUMO gaps and molecule orbit plots of the model containing phosphate groups (P-MO) or sulfonate groups (S-MO)[51]. Copyright 2018, Springer Nature
表3 B-CDots和N-CDots的非线性光学性能参数[54]
Table 3 Values of the nonlinear optical parameters belong to B-CDots and N-CDots reported in ref[54]
图4 (a)不同浓度B-GDots下的T1-MR和R1-MRI图。(b)1/T1随B-GDots浓度的变化关系。斜率为弛豫率 r 1 [58]
Fig.4 (a) T1-weighted MR images and R1 maps of MRI phantom images of B-GDots at different concentrations. (b) Plot of 1/T1 as a function of B-GDots concentration. The slope of the curve is defined as the specific relaxivity of r 1 [58]. Copyright 2016, John Wiley and Sons
图5 O-CDots,N-CDots和N,S-CDots的荧光机理:(1)从基态激发并被表面态俘获的电子;(2)激发态电子通过非辐射途径回到基态;(3)激发态电子通过辐射途径回到基态。引入的S原子似乎能够消除O原子掺杂的表面态(O-states)并增强N原子掺杂的表面态(N-states),从而导致O-states在N,S-CDots中几乎消失[47]
Fig.5 Representation of the fluorescence mechanism of O-CDots, N-CDots, and N, S-CDots. (1) Electrons excited from the ground state and trapped by the surface states, (2) excited electrons return to the ground state via a nonradiative route, and (3) excited electrons return to the ground state via a radiative route. The introduced sulfur atoms seem to be able to eliminate the O-states and enhance the N-state, leading to that the original O-states are nearly neglected in the N, S-CDots[47]. Copyright 2013, John Wiley and Sons
表4 一些共掺杂CDots的前驱体,结构和荧光性能
Table 4 Precursor, structure, and fluorescence performance of some codoped CDots
Precursor Products Heteroatom-related bonds Average diameter/nm QY/% Max λem/nm
Carbon source Heteroatom source
Citric acid L-cysteine N, S-CDots Pyridinic, Pyrrolic N; C—S—C 7 73(λex: 345 nm) 415[47]
α-Lipoic acid,
Ethylenediamine
Pyridinic, Pyrrolic, Graphitic N—C—S—, —C—SOx; (x = 2, 3, 4) 2.7 54.4(λex: 390 nm) 472[77]
Sodium citrate Sulfamide C—N—C, N—C, N—H; —C—SOx(x = 3, 4) 8 55 (λex: 350 nm) 440[78]
Citric acid Diethylenetriamine,Phosphoric acid N, P-CDots Pyridinic, Pyrrolic, Graphitic N;C—P 2 70 (λex: 360 nm) 452[71]
Citric acid monohydrate Diammonium hydrogen
phosphate
C—N—C,N—H;C— PO 4 3 - 2.7 59 (λex: 340 nm) 440[79]
Diethylenetriaminepenta
(Methylene-phosphonic
acid), m-
Phenylenediamine
—NH+—, —C=NH+;P—C, P—O 2.9 32(λex: 440 nm) 510[80]
Citric acid Ethylene diamine,
Phosphoric acid
Tertiary amines, Quaternary-N, N—H;C3—P, C—PO3 and/or C2—PO2, C—O—P 4.5 30 (λex: 340 nm) (blue)
78(λex: 450 nm) (green)
Dual emission
430, 500[81]
m-Phenylenediamine, Ethylenediamine, Phosphoric acid Tertiary amines, Pyridinic, Pyrrolic N, N—H;P—X aromatic, P—O groups 8.1 51(λex: 340 nm) (blue)
38 (λex: 450 nm) (green)
Dual emission
450, 510[82]
Diethylenetriamine,boric
acid
N, B-CDots Pyrridinic, Pyrrolic, Graphitic N
B—C, BC3, BC2O, BCO2
2 39 (λex: 360 nm) 452[71]
Sucrose Urea, Boric acid Pyridinic, Pyrrolic, Graphitic N,B—C, B—N, BC2O, BCO2 4.5 14.2 (λex: 365 nm) 450[83]
Citric acid Urea, Boric acid B—O, B—O—C, B—N 20 /(λex: 355 nm) 455[84]
p-Phenylenediamine, 3-
Formylphenylboronic acid
/ 8.1 36.5 (λex: 400 nm) 560[85]
3-Aminophenylboronic acid / 5 /(λex: 400 nm) 500[86]
N-(4-hydroxyphenyl)
glycine, Boric acid
B—N, B—C, and C—N 3 23.7(λex: 365 nm) 500[87]
图6 未掺杂(左)和纳米半导体在表面掺杂(右)的碳点的示意图[88]
Fig.6 Cartoon illustrations of nondoped (left) and surface-doped (right) carbon dots with nanoscale semiconductors[88]. Copyright 2011, Royal Society of Chemistry
图7 (a)在不同DEA浓度下,DMF溶液中的PVK-CDots(△,激发波长为440 nm)和二氯苯溶液中的PVK-C60(?,激发波长为540 nm)的荧光强度的Stern-Volmer猝灭图;(b)在不同DNT浓度下,DMF溶液中PVK-CDots的荧光强度(激发波长为440 nm)的Stern-Volmer猝灭图[111]
Fig.7 (a) Stern-Volmer quenching plots for fluorescence intensities of the PVK-CDots in DMF solution (△, 440 nm excitation) and the PVK-C60 in dichlorobenzene solution (?, 540 nm excitation) at different DEA concentrations. (b) Stern-Volmer quenching plot for fluorescence intensities (440 nm excitation) of the PVK-CDots in DMF solution at different DNT concentrations[111]
图8 含包裹物的碳点(主-客体碳点,左)和富勒烯(右)[20]
Fig.8 Carbon dots with encapsulated species (host-guest carbon dot, left) versus an endofullerene (right)[20]
[1]
Wang Y L, Anilkumar P, Cao L, Liu J H, Luo P G, Tackett K N II, Sahu S, Wang P, Wang X, Sun Y P. Exp. Biol. Med., 2011, 236(11): 1231.

doi: 10.1258/ebm.2011.011132     URL    
[2]
Guo Y M, Wang Z, Shao H W, Jiang X Y. Carbon, 2013, 52: 583.

doi: 10.1016/j.carbon.2012.10.028     URL    
[3]
Hu C, Li M Y, Qiu J S, Sun Y P. Chem. Soc. Rev., 2019, 48(8): 2315.

doi: 10.1039/C8CS00750K     URL    
[4]
Ai L, Yang Y S, Wang B Y, Chang J B, Tang Z Y, Yang B, Lu S Y. Sci. Bull., 2021, 66(8): 839.

doi: 10.1016/j.scib.2020.12.015     URL    
[5]
Bogireddy N K R, Lara J, Fragoso L R, Agarwal V. Chem. Eng. J., 2020, 401: 126097.

doi: 10.1016/j.cej.2020.126097     URL    
[6]
Bandi R, Kannikanti H G, Dadigala R, Gangapuram B R, Vaidya J R, Guttena V. Opt. Mater., 2020, 109: 110349.

doi: 10.1016/j.optmat.2020.110349     URL    
[7]
Du X Y, Wang C F, Wu G, Chen S. Angew. Chem. Int. Ed., 2021, 60(16): 8585.

doi: 10.1002/anie.202004109     URL    
[8]
Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308.

doi: 10.1021/ja904843x     URL    
[9]
Bao X, Yuan Y, Chen J Q, Zhang B H, Li D, Zhou D, Jing P T, Xu G Y, Wang Y L, Holá K, Shen D Z, Wu C F, Song L, Liu C B, Zbořil R, Qu S N. Light.: Sci. Appl., 2018, 7(1): 91.

doi: 10.1038/s41377-018-0090-1     URL    
[10]
Zhou Y F, Benetti D, Tong X, Jin L, Wang Z M, Ma D L, Zhao H G, Rosei F. Nano Energy, 2018, 44: 378.

doi: 10.1016/j.nanoen.2017.12.017     URL    
[11]
Qu Y N, Xu X J, Huang R L, Qi W, Su R X, He Z M. Chem. Eng. J., 2020, 382: 123016.

doi: 10.1016/j.cej.2019.123016     URL    
[12]
Chen L T, Liu Y L, Cheng G H, Fan Z G, Yuan J Y, He S L, Zhu G F. Sci. Total. Environ., 2021, 759: 143432.

doi: 10.1016/j.scitotenv.2020.143432     URL    
[13]
Shi D C, Yan F Y, Zheng T C, Wang Y Y, Zhou X G, Chen L. RSC Adv., 2015, 5(119): 98492.

doi: 10.1039/C5RA18800H     URL    
[14]
Wang F X, Hao Q L, Zhang Y H, Xu Y J, Lei W. Microchimica Acta, 2016, 183(1): 273.

doi: 10.1007/s00604-015-1650-1     URL    
[15]
Long P, Feng Y Y, Cao C, Li Y, Han J K, Li S W, Peng C, Li Z Y, Feng W. Adv. Funct. Mater., 2018, 28(37): 1800791.

doi: 10.1002/adfm.201800791     URL    
[16]
Wang W J, Zeng Z T, Zeng G M, Zhang C, Xiao R, Zhou C Y, Xiong W P, Yang Y, Lei L, Liu Y, Huang D L, Cheng M, Yang Y Y, Fu Y K, Luo H Z, Zhou Y. Chem. Eng. J., 2019, 378: 122132.

doi: 10.1016/j.cej.2019.122132     URL    
[17]
Sun Y P, Wang X, Lu F S, Cao L, Meziani M J, Luo P G, Gu L R, Veca L M. J. Phys. Chem. C, 2008, 112(47): 18295.

doi: 10.1021/jp8076485     URL    
[18]
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128(24): 7756.

pmid: 16771487
[19]
Anilkumar P, Cao L, Yu J J, Tackett K N II, Wang P, Meziani M J, Sun Y P. Small, 2013, 9(4): 545.

doi: 10.1002/smll.201202000     URL    
[20]
Sun Y P, Wang P, Lu Z M, Yang F, Meziani M J, LeCroy G E, Liu Y, Qian H J. Sci. Rep., 2015, 5(1): 12354.

doi: 10.1038/srep12354     URL    
[21]
Zhang H Y, Wang B L, Yu X W, Li J Y, Shang J, Yu J H. Angew. Chem. Int. Ed., 2020, 59(44): 19390.

doi: 10.1002/anie.202006545     URL    
[22]
Wang L, Yin Y, Jain A, Zhou H S. Langmuir, 2014, 30(47): 14270.

doi: 10.1021/la5031813     pmid: 25365539
[23]
Yang Z, Xu M H, Liu Y, He F J, Gao F, Su Y J, Wei H, Zhang Y F. Nanoscale, 2014, 6(3): 1890.

doi: 10.1039/c3nr05380f     pmid: 24362823
[24]
Dang V D, Ganganboina A B, Doong R A. ACS Appl. Mater. Interfaces, 2020, 12(29): 32247.

doi: 10.1021/acsami.0c04645     URL    
[25]
Tang L B, Ji R B, Li X M, Bai G X, Liu C P, Hao J H, Lin J Y, Jiang H X, Teng K S, Yang Z B, Lau S P. ACS Nano, 2014, 8(6): 6312.

doi: 10.1021/nn501796r     URL    
[26]
Niu W J, Li Y, Zhu R H, Shan D, Fan Y R, Zhang X J. Sens. Actuat. B: Chem., 2015, 218: 229.

doi: 10.1016/j.snb.2015.05.006     URL    
[27]
Yi Z H, Li X M, Zhang H Y, Ji X L, Sun W, Yu Y X, Liu Y N, Huang J X, Sarshar Z, Sain M. Talanta, 2021, 222: 121663.

doi: 10.1016/j.talanta.2020.121663     URL    
[28]
Pan L L, Sun S, Zhang L, Jiang K, Lin H W. Nanoscale, 2016, 8(39): 17350.

doi: 10.1039/C6NR05878G     URL    
[29]
Sun S, Zhang L, Jiang K, Wu A G, Lin H W. Chem. Mater., 2016, 28(23): 8659.

doi: 10.1021/acs.chemmater.6b03695     URL    
[30]
Ding H, Wei J S, Zhang P, Zhou Z Y, Gao Q Y, Xiong H M. Small, 2018, 14(22): 1800612.

doi: 10.1002/smll.201800612     URL    
[31]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2015, 54(18): 5360.

doi: 10.1002/anie.201501193     pmid: 25832292
[32]
Niino S, Takeshita S, Iso Y, Isobe T. J. Lumin., 2016, 180: 123.

doi: 10.1016/j.jlumin.2016.08.021     URL    
[33]
Qian Z S, Ma J J, Shan X Y, Feng H, Shao L X, Chen J R. Chem. Eur. J., 2014, 20(8): 2254.

doi: 10.1002/chem.201304374     URL    
[34]
Wang J Q, Zhang P F, Huang C, Liu G, Leung K C F, Wáng Y X J. Langmuir, 2015, 31(29): 8063.

doi: 10.1021/acs.langmuir.5b01875     URL    
[35]
Sarkar S, Sudolská M, Dubecký M, Reckmeier C J, Rogach A L, Zbořil R, Otyepka M. J. Phys. Chem. C, 2016, 120(2): 1303.

doi: 10.1021/acs.jpcc.5b10186     URL    
[36]
Liang Y, Shen Y F, Liu C L, Ren X Y. J. Lumin., 2018, 197: 285.

doi: 10.1016/j.jlumin.2018.01.034     URL    
[37]
Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Adv. Mater., 2018, 30(1): 1704740.

doi: 10.1002/adma.201704740     URL    
[38]
Wang B Y, Li J, Tang Z Y, Yang B, Lu S Y. Sci. Bull., 2019, 64(17): 1285.

doi: 10.1016/j.scib.2019.07.021     URL    
[39]
Ye X X, Xiang Y H, Wang Q R, Li Z, Liu Z H. Small, 2019, 15(48): e1901673.
[40]
Fang Q Q, Dong Y Q, Chen Y M, Lu C H, Chi Y W, Yang H H, Yu T. Carbon, 2017, 118: 319.

doi: 10.1016/j.carbon.2017.03.061     URL    
[41]
Liang W X, Ge L, Hou X F, Ren X Y, Yang L J, Bunker C E, Overton C M, Wang P, Sun Y P. C - J. Carbon Res., 2019, 5(4): 70.
[42]
Xiong Y, Schneider J, Ushakova E V, Rogach A L. Nano Today, 2018, 23: 124.

doi: 10.1016/j.nantod.2018.10.010     URL    
[43]
Mura S, Stagi L, Malfatti L, Carbonaro C M, Ludmerczki R, Innocenzi P. J. Phys. Chem. A, 2020, 124(1): 197.

doi: 10.1021/acs.jpca.9b10884     URL    
[44]
Chandra S, Patra P, Pathan S H, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A. J. Mater. Chem. B, 2013, 1(18): 2375.

doi: 10.1039/c3tb00583f     pmid: 32261072
[45]
Loi E, Ng R W C, Chang M M F, Fong J F Y, Ng Y H, Ng S M. Luminescence, 2017, 32(1): 114.

doi: 10.1002/bio.3157     URL    
[46]
Guo Y, Yang L L, Li W W, Wang X F, Shang Y H, Li B X. Microchimica Acta, 2016, 183(4): 1409.

doi: 10.1007/s00604-016-1779-6     URL    
[47]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30): 7800.

doi: 10.1002/anie.201301114     URL    
[48]
Xu Q, Pu P, Zhao J G, Dong C B, Gao C, Chen Y S, Chen J R, Liu Y, Zhou H J. J. Mater. Chem. A, 2015, 3(2): 542.

doi: 10.1039/C4TA05483K     URL    
[49]
Bhunia S K, Saha A, Maity A R, Ray S C, Jana N R. Sci. Rep., 2013, 3(1): 1473.

doi: 10.1038/srep01473     URL    
[50]
Wang W, Li Y M, Cheng L, Cao Z Q, Liu W G. J. Mater. Chem. B, 2014, 2(1): 46.

doi: 10.1039/c3tb21370f     pmid: 32261297
[51]
Shen Y F, Liang Y, Wang Y P, Liu C L, Ren X Y. J. Nanoparticle Res., 2018, 20(9): 229.

doi: 10.1007/s11051-018-4334-z     URL    
[52]
Ma Y, Chen A Y, Huang Y Y, He X, Xie X F, He B, Yang J H, Wang X Y. Carbon, 2020, 162: 234.

doi: 10.1016/j.carbon.2020.02.048     URL    
[53]
Wang H, Revia R, Mu Q X, Lin G Y, Yen C, Zhang M Q. Nanoscale Horiz., 2020, 5(3): 573.

doi: 10.1039/c9nh00608g     pmid: 32118222
[54]
Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83: 173.

doi: 10.1016/j.carbon.2014.11.032     URL    
[55]
Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Lett., 2014, 595/596: 203.

doi: 10.1016/j.cplett.2014.02.012     URL    
[56]
Fan Z T, Li Y C, Li X H, Fan L Z, Zhou S X, Fang D C, Yang S H. Carbon, 2014, 70: 149.

doi: 10.1016/j.carbon.2013.12.085     URL    
[57]
Shen C, Wang J, Cao Y, Lu Y. J. Mater. Chem. C, 2015, 3(26): 6668.

doi: 10.1039/C5TC01156F     URL    
[58]
Wang H, Revia R, Wang K, Kant R J, Mu Q X, Gai Z, Hong K L, Zhang M Q. Adv. Mater., 2017, 29(11): 1605416.

doi: 10.1002/adma.201605416     URL    
[59]
Wang Y, Huang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Nano Lett., 2009, 9(1): 220.

doi: 10.1021/nl802810g     pmid: 19072314
[60]
Peng J, Guo Y Q, Lv H, Dou X Y, Chen Q, Zhao J Y, Wu C Z, Zhu X J, Lin Y, Lu W, Wu X J, Xie Y. Angew. Chem., 2016, 128(9): 3228.

doi: 10.1002/ange.201511436     URL    
[61]
Molkenova A, Atabaev T S. Optik, 2019, 187: 70.

doi: 10.1016/j.ijleo.2019.05.013    
[62]
Feng Q, Xe Z G, Zheng M. Chem. Eng. J., 2021, 420: 127647.

doi: 10.1016/j.cej.2020.127647     URL    
[63]
Shan X Y, Chai L J, Ma J J, Qian Z S, Chen J R, Feng H. Anal., 2014, 139(10): 2322.

doi: 10.1039/C3AN02222F     URL    
[64]
Sadhanala H K, Nanda K K. Carbon, 2016, 96: 166.

doi: 10.1016/j.carbon.2015.08.096     URL    
[65]
Jiang Q J, Liu L, Li Q Y, Cao Y, Chen D, Du Q S, Yang X B, Huang D P, Pei R J, Chen X, Huang G. J. Nanobiotechnology, 2021, 19(1): 64.

doi: 10.1186/s12951-021-00811-w     URL    
[66]
Ren X Y, Liu L H, Li Y, Dai Q, Zhang M, Jing X L. J. Mater. Chem. B, 2014, 2(34): 5541.

doi: 10.1039/C4TB00709C     URL    
[67]
Yang S H, Sun X H, Wang Z Y, Wang X Y, Guo G S, Pu Q S. Nano Res., 2018, 11(3): 1369.

doi: 10.1007/s12274-017-1751-8     URL    
[68]
Zhou Q J, Fang Y J, Li J Y, Hong D, Zhu P P, Chen S H, Tan K J. Talanta, 2021, 222: 121548.

doi: 10.1016/j.talanta.2020.121548     URL    
[69]
Zhang Z, Chang H, Xue B L, Zhang S F, Li X P, Wong W K, Li K C, Zhu X J. Cellulose, 2018, 25(1): 377.

doi: 10.1007/s10570-017-1594-1     URL    
[70]
Xu Q, Kuang T R, Liu Y, Cai L L, Peng X F, Sreenivasan Sreeprasad T, Zhao P, Yu Z Q, Li N. J. Mater. Chem. B, 2016, 4(45): 7204.

doi: 10.1039/C6TB02131J     URL    
[71]
Barman M K, Jana B, Bhattacharyya S, Patra A. J. Phys. Chem. C, 2014, 118(34): 20034.

doi: 10.1021/jp507080c     URL    
[72]
Ananthanarayanan A, Wang Y, Routh P, Sk M A, Than A, Lin M, Zhang J, Chen J, Sun H D, Chen P. Nanoscale, 2015, 7(17): 8159.

doi: 10.1039/c5nr01519g     pmid: 25875153
[73]
Yu D S, Xue Y H, Dai L M. J. Phys. Chem. Lett., 2012, 3(19): 2863.

doi: 10.1021/jz3011833     URL    
[74]
Cruz-Silva E, Cullen D A, Gu L, Romo-Herrera J M, Muñoz-Sandoval E, LÓpez-Urías F, Sumpter B G, Meunier V, Charlier J C, Smith D J, Terrones H, Terrones M. ACS Nano, 2008, 2(3): 441.

doi: 10.1021/nn700330w     pmid: 19206568
[75]
Kundu S, Yadav R M, Narayanan T N, Shelke M V, Vajtai R, Ajayan P M, Pillai V K. Nanoscale, 2015, 7(27): 11515.

doi: 10.1039/C5NR02427G     URL    
[76]
Wang X, Ma Y R, Wu Q Y, Wang Z Z, Tao Y C, Zhao Y J, Wang B, Cao J J, Wang H, Gu X Q, Huang H, Li S, Wang X Y, Hu F R, Shao M W, Liao L S, Sham T K, Liu Y, Kang Z H. Laser Photonics Rev., 2021, 15(3): 2000412.

doi: 10.1002/lpor.202000412     URL    
[77]
Ding H, Wei J S, Xiong H M. Nanoscale, 2014, 6(22): 13817.

doi: 10.1039/c4nr04267k     pmid: 25297983
[78]
Xu Q, Liu Y, Gao C, Wei J F, Zhou H J, Chen Y S, Dong C B, Sreeprasad T S, Li N, Xia Z H. J. Mater. Chem. C, 2015, 3(38): 9885.

doi: 10.1039/C5TC01912E     URL    
[79]
Chandra S, Laha D, Pramanik A, Ray Chowdhuri A, Karmakar P, Sahu S K. Luminescence, 2016, 31(1): 81.

doi: 10.1002/bio.2927     pmid: 25964146
[80]
Li J J, Jiao Y Z, Feng L D, Zhong Y, Zuo G C, Xie A, Dong W. Microchimica Acta, 2017, 184(8): 2933.

doi: 10.1007/s00604-017-2314-0     URL    
[81]
Parvin N, Mandal T K. Microchimica Acta, 2017, 184(4): 1117.

doi: 10.1007/s00604-017-2108-4     URL    
[82]
Sun X C, Brückner C, Lei Y. Nanoscale, 2015, 7(41): 17278.

doi: 10.1039/C5NR05549K     URL    
[83]
Sadhanala H K, Nanda K K. J. Phys. Chem. C, 2015, 119(23): 13138.

doi: 10.1021/acs.jpcc.5b04140     URL    
[84]
Tabaraki R, Abdi O, Yousefipour S. J. Fluoresc., 2017, 27(2): 651.

doi: 10.1007/s10895-016-1994-x     pmid: 27975166
[85]
Li R S, Yuan B F, Liu J H, Liu M L, Gao P F, Li Y F, Li M, Huang C Z. J. Mater. Chem. B, 2017, 5(44): 8719.

doi: 10.1039/C7TB02356A     URL    
[86]
Mao M, Tian T, He Y, Ge Y L, Zhou J G, Song G W. Microchimica Acta, 2017, 185(1): 17.

doi: 10.1007/s00604-017-2541-4     URL    
[87]
Jahan S, Mansoor F, Naz S, Lei J P, Kanwal S. Anal. Chem., 2013, 85(21): 10232.

doi: 10.1021/ac401949k     URL    
[88]
Anilkumar P, Wang X, Cao L, Sahu S, Liu J H, Wang P, Korch K, Tackett K N, Parenzan A, Sun Y P. Nanoscale, 2011, 3(5): 2023.

doi: 10.1039/c0nr00962h     URL    
[89]
Mahmood A, Shi G S, Wang Z, Rao Z P, Xiao W, Xie X F, Sun J. J. Hazard. Mater., 2021, 401: 123402.

doi: 10.1016/j.jhazmat.2020.123402     URL    
[90]
Dutta M, Sarkar S, Ghosh T, Basak D. J. Phys. Chem. C, 2012, 116(38): 20127.

doi: 10.1021/jp302992k     URL    
[91]
Zhang X Y, Liu J K, Wang J D, Yang X H. Ind. Eng. Chem. Res., 2015, 54(6): 1766.

doi: 10.1021/ie504444w     URL    
[92]
Yu Y, Song M Y, Chen C L, Du Y Y, Li C G, Han Y, Yan F, Shi Z, Feng S H. ACS Nano, 2020, 14(8): 10688.

doi: 10.1021/acsnano.0c05332     URL    
[93]
Wu J R, Fu S C, Zhang X T, Wu C X, Wang A L, Li C, Shan G Y, Liu Y C. ACS Appl. Mater. Interfaces, 2020, 12(5): 6262.

doi: 10.1021/acsami.9b19403     URL    
[94]
Zhang L Y, Han Y L, Yang J J, Deng S L, Wang B Y. Appl. Surf. Sci., 2021, 546: 149089.

doi: 10.1016/j.apsusc.2021.149089     URL    
[95]
Li B, Fang Q, Si Y, Huang T, Huang W Q, Hu W Y, Pan A L, Fan X X, Huang G F. Chem. Eng. J., 2020, 397: 125470.

doi: 10.1016/j.cej.2020.125470     URL    
[96]
Mou Z G, Lu C, Yu K, Wu H, Zhang H, Sun J H, Zhu M S, Cynthia Goh M. Energy Technol., 2019, 7(3): 1800589.

doi: 10.1002/ente.201800589     URL    
[97]
Liu J L, Rojas-Andrade M D, Chata G, Peng Y, Roseman G, Lu J E, Millhauser G L, Saltikov C, Chen S W. Nanoscale, 2018, 10(1): 158.

doi: 10.1039/C7NR07367D     URL    
[98]
Nwaji N, Achadu O J, Nyokong T. New J. Chem., 2018, 42(8): 6040.

doi: 10.1039/C7NJ05196D     URL    
[99]
Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W. Adv. Mater., 2020, 32(4): 1906374.

doi: 10.1002/adma.201906374     URL    
[100]
Liu C J, Zhang P, Zhai X Y, Tian F, Li W C, Yang J H, Liu Y, Wang H B, Wang W, Liu W G. Biomaterials, 2012, 33(13): 3604.

doi: 10.1016/j.biomaterials.2012.01.052     URL    
[101]
Liu Y M, Wang P, Shiral Fernando K A, LeCroy G E, Maimaiti H, Harruff-Miller B A, Lewis W K, Bunker C E, Hou Z L, Sun Y P. J. Mater. Chem. C, 2016, 4(29): 6967.

doi: 10.1039/C6TC01932C     URL    
[102]
Ren J K, Stagi L, Innocenzi P. Prog. Solid State Chem., 2021, 62: 100295.

doi: 10.1016/j.progsolidstchem.2020.100295     URL    
[103]
Zhou Y Q, Sharma S, Peng Z L, Leblanc R. Polymers, 2017, 9(12): 67.

doi: 10.3390/polym9020067     URL    
[104]
Sachdev A, Matai I, Gopinath P. Colloids Surf. B: Biointerfaces, 2016, 141: 242.

doi: 10.1016/j.colsurfb.2016.01.043     URL    
[105]
Zhai L, Ren X M, Xu Q. Mater. Chem. Front., 2021, 5(11): 4272.

doi: 10.1039/D1QM00019E     URL    
[106]
Yan F Y, Zhang H, Yu N H, Sun Z H, Chen L. Sens. Actuat. B: Chem., 2021, 329: 129263.

doi: 10.1016/j.snb.2020.129263     URL    
[107]
Yang P, Zhu Z Q, Li X H, Zhang T, Zhang W, Chen M Z, Zhou X Y. J. Alloys Compd., 2020, 834: 154399.

doi: 10.1016/j.jallcom.2020.154399     URL    
[108]
Chen B, Feng J C. J. Phys. Chem. C, 2015, 119(14): 7865.

doi: 10.1021/acs.jpcc.5b00208     URL    
[109]
Bhunia S K, Nandi S, Shikler R, Jelinek R. Nanoscale, 2016, 8(6): 3400.

doi: 10.1039/C5NR08400H     URL    
[110]
Lee U, Heo E, Le T H, Lee H, Kim S, Lee S, Jo H, Yoon H. Chem. Eng. J., 2021, 405: 126988.

doi: 10.1016/j.cej.2020.126988     URL    
[111]
Yang F, Ren X Y, LeCroy G E, Song J Y, Wang P, Beckerle L, Bunker C E, Xiong Q W, Sun Y P. ACS Omega, 2018, 3(5): 5685.

doi: 10.1021/acsomega.8b00839     pmid: 31458768
[112]
Zhang H J, Zhang Q, Li M M, Kan B, Ni W, Wang Y C, Yang X, Du C X, Wan X J, Chen Y S. J. Mater. Chem. C, 2015, 3(48): 12403.

doi: 10.1039/C5TC02957K     URL    
[113]
Liu C Y, Chang K W, Guo W B, Li H, Shen L, Chen W Y, Yan D W. Appl. Phys. Lett., 2014, 105(7): 073306.

doi: 10.1063/1.4893994     URL    
[114]
Jian X, Li J G, Yang H M, Cao L L, Zhang E H, Liang Z H. Carbon, 2017, 114: 533.

doi: 10.1016/j.carbon.2016.12.033     URL    
[115]
Du X Y, Shen J C, Zhang J, Ling L T, Wang C F, Chen S. Polym. Chem., 2018, 9(4): 420.

doi: 10.1039/C7PY01969F     URL    
[116]
Ferrer-Ruiz A, Scharl T, Rodríguez-Pérez L, Cadranel A,Herranz M Á Martín N, Guldi D M. J. Am. Chem. Soc., 2020, 142(48): 20324.

doi: 10.1021/jacs.0c10132     URL    
[117]
Wang P, Liu J H, Gao H D, Hu Y, Hou X F, LeCroy G E, Bunker C E, Liu Y F, Sun Y P. J. Mater. Chem. C, 2017, 5(25): 6328.

doi: 10.1039/C7TC01574G     URL    
[118]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H, Sci. Adv., 2017, 3: 8.
[119]
Yu X W, Liu K K, Zhang H Y, Wang B L, Yang G J, Li J Y, Yu J H. CCS Chem., 2021: 252.
[120]
Gao J P, Yao R X, Chen X H, Li H H, Zhang C, Zhang F Q, Zhang X M. Dalton Trans., 2021, 50(5): 1690.

doi: 10.1039/D0DT03048A     URL    
[121]
Wang Y F, Wang B L, Shi H Z, Zhang C H, Tao C Y, Li J Y. Inorg. Chem. Front., 2018, 5(11): 2739.

doi: 10.1039/C8QI00637G     URL    
[122]
He J L, Chen Y H, He Y L, Xu X K, Lei B F, Zhang H R, Zhuang J L, Hu C F, Liu Y L. Small, 2020, 16(49): 2005228.

doi: 10.1002/smll.202005228     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[3] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[8] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[9] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[10] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[11] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[12] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[13] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[14] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[15] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.