English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1212-1220 DOI: 10.7536/PC200721 前一篇   后一篇

• 综述 •

二维材料修饰隔膜抑制锂硫电池穿梭效应策略

郭林莉1, 张新1, 肖敏2, 王拴紧2, 韩东梅1,2,*(), 孟跃中1,2,*()   

  1. 1 中山大学 化学工程与技术学院 珠海 519082
    2 中山大学材料科学与工程学院 广东省低碳化学与过程节能重点实验室/光电材料与技术国家重点实验室 广州 510275
  • 收稿日期:2020-07-13 修回日期:2020-08-20 出版日期:2020-12-28 发布日期:2020-12-28
  • 通讯作者: 韩东梅, 孟跃中
  • 基金资助:
    国家自然科学基金面上项目(21978332)

Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries

Linli Guo1, Xin Zhang1, Min Xiao2, Shuanjin Wang2, Dongmei Han1,2(), Yuezhong Meng1,2()   

  1. 1 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
    2 The Key of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2020-07-13 Revised:2020-08-20 Online:2020-12-28 Published:2020-12-28
  • Contact: Dongmei Han, Yuezhong Meng
  • Supported by:
    National Natural Science Foundation of China(21978332)

锂硫电池具有高理论比容量( 1675 mAh /g) 和高能量密度( 2600 Wh /kg),被认为是极具应用潜力的电池体系,因此被广泛研究和关注。然而硫的导电性差、利用率低以及多硫化物的穿梭效应等问题使得锂硫电池的循环性能不理想。为了克服穿梭效应的影响,近年来很多研究工作集中在功能隔膜的设计制备研究方面,通过修饰的隔膜抑制穿梭效应,提高Li-S电池循环稳定性。本文总结了二维(2D)材料修饰隔膜方面的最新研究进展,并对未来的研究方向提出了思考并进行了展望。

Lithium-sulfur batteries have a theoretical discharge specific capacity (1675 mAh /g) and energy density (2600 Wh /kg) that are much higher than those of lithium-ion batteries. Lithium-sulfur batteries are considered as very promising battery systems, thus they have been widely concerned and researched. However, the poor conductivity of sulfur, low utilization, and the shuttle effect of polysulfides make the cycling performance of lithium-sulfur batteries unstable. In order to overcome the impact of the shuttle effect, a variety of new separator designs and preparation methods have been developed in recent years to improve the cycle stability of the battery. This article reviews the latest research progress from the perspective of 2D material modification of the separator, and uses high-quality separators to suppress the shuttle effect, which will better achieve high stability of Li-S batteries. Besides, future developments are prospected.

Contents

1 Introduction

1.1 The structure and working principle of lithium-sulfur batteries

1.2 The challenges of lithium-sulfur batteries

2 Two-dimensional material modified separator

2.1 Graphene

2.2 MXenes

2.3 Two-dimensional transition metal dichalcogenideso

2.4 Other two-dimensional materials

3 Conclusion and outlook

()
图1 非水锂硫电池的典型充放电曲线[9]
Fig. 1 Typical charge-discharge curves for a non-aqueous lithium-sulfur cell[9]
图2 使用硫和G @PP隔膜的集成结构以及相应的电池组件的电极配置示意图[35]
Fig. 2 Schematic of the electrode configuration using an integrated structure of sulfur and G@PP separator and the corresponding battery assembly[35]
图3 (a)ODC/rGO的制备示意图。(b)SEM图像,(c)TEM图像,(d)HR-TEM图像和(e)ODC/rGO的N2吸附-解吸等温线(插图是孔径分布)[37]
Fig. 3 (a) Schematic process of fabricating the ODC/rGO. (b) SEM image, (c) TEM image, (d) HR-TEM images, and (e) N2 adsorption desorption isotherms of the ODC/rGO (the inset is the pore size distribution)[37]
图4 使用PP和MPP隔膜的Li-S电池的示意图[45]
Fig. 4 Schematic configuration of the Li-S cells using PP and MPP separators[45]
图5 (a)具有rGO @MoS2涂层隔板的示意Li-S电池,(b)rGO @MoS2复合材料的SEM图像,(c)rGO @MoS2涂层的隔板的截面SEM图像[57]
Fig. 5 (a) Schematic Li-S cell with rGO@MoS2-coated separator, (b) SEM image of rGO@MoS2 composite, (c) cross-sectional SEM image of rGO@MoS2-coated separator[57]
图6 通过过滤制备Ni3(HITP)2修饰的隔膜的过程及其组装到Li-S电池中的图示[69]
Fig. 6 Illustration of the Preparation Process of the Ni3(HITP)2-Modified Separator by Filtration and Its Assembly into the Li-S Battery[69]
图7 具有FBN分隔物的Li-S电池的结构:(a)具有FBN隔膜的三明治状Li-S电池的示意配置;(b)在隔膜上的FBN纳米片的涂层的横截面的SEM图像;(c)高倍SEM图像FBN隔膜的表面;(d)FBN纳米片的拉曼光谱[73]
Fig. 7 Structure of the Li-S cell with an FBN separator: (a) schematic configuration of a sandwich-like Li-S cell with an FBN separator; (b) SEM image of the cross section of the coating layer of FBN nanosheets on the separator; (c) high-magnification SEM image of the surface of the FBN separator; (d) Raman spectrum of FBN nanosheets[73]
[1]
Luo Y Q, Guo L L, Xiao M, Wang S J, Ren S, Han D M, Meng Y Z. J. Mater. Chem. A, 2020, 8(9):4629.

doi: 10.1039/C9TA12910C     URL    
[2]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4):1167.

doi: 10.1021/ja3091438     pmid: 23294028
[3]
Armand M, Tarascon J M. Nature, 2008, 451(7179):652.

doi: 10.1038/451652a     URL    
[4]
Chu S, Majumdar A. Nature, 2012, 488(7411):294.

doi: 10.1038/nature11475     URL    
[5]
Rehman S, Khan K, Zhao Y F, Hou Y L. J. Mater. Chem. A, 2017, 5(7):3014.

doi: 10.1039/C6TA10111A     URL    
[6]
Manthiram A, Fu Y Z, Su Y S. Acc. Chem. Res., 2013, 46(5):1125.

doi: 10.1021/ar300179v     URL    
[7]
Ali T, Yan C L. ChemSusChem, 2020, 13(6):1447.

doi: 10.1002/cssc.v13.6     URL    
[8]
Fang X, Peng H S. Small, 2015, 11(13):1488.

doi: 10.1002/smll.201402354     pmid: 25510342
[9]
Suriyakumar S, Stephan A M. ACS Appl. Energy Mater., 2020, 3(9):8095.

doi: 10.1021/acsaem.0c01354     URL    
[10]
Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): A1969.

doi: 10.1149/1.1806394     URL    
[11]
Hofmann A F, Fronczek D N, Bessler W G. J. Power Sources, 2014, 259:300.

doi: 10.1016/j.jpowsour.2014.02.082     URL    
[12]
Ren W C, Ma W, Zhang S F, Tang B T. Energy Storage Mater., 2019, 23:707.
[13]
Liu B, Fang R Y, Xie D, Zhang W K, Huang H, Xia Y, Wang X L, Xia X H, Tu J P. Energy Environ. Mater., 2018, 1(4):196.

doi: 10.1002/eem2.12021     URL    
[14]
Fang R P, Zhao S Y, Sun Z H, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48):1606823.

doi: 10.1002/adma.v29.48     URL    
[15]
Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Nano Energy, 2017, 42:205.

doi: 10.1016/j.nanoen.2017.10.053     URL    
[16]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.

doi: 10.1038/nature13970     URL    
[17]
Guo Y P, Li H Q, Zhai T Y. Adv. Mater., 2017, 29(29):1700007.

doi: 10.1002/adma.201700007     URL    
[18]
Huang J Q, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9(3):3002.

doi: 10.1021/nn507178a     URL    
[19]
Cheon S E, Choi S S, Han J S, Choi Y S, Jung B H, Lim H S. J. Electrochem. Soc., 2004, 151(12): A2067.
[20]
Su Y S, Manthiram A. Nat. Commun., 2012, 3:1166.

doi: 10.1038/ncomms2163     URL    
[21]
Kong L, Peng H J, Huang J Q, Zhu W C, Zhang G, Zhang Z W, Zhai P Y, Sun P P, Xie J, Zhang Q. Energy Storage Mater., 2017, 8:153.
[22]
Rana M, Li M, He Q, Luo B, Wang L Z, Gentle I, Knibbe R. J. Energy Chem., 2020, 44:51.

doi: 10.1016/j.jechem.2019.08.017     URL    
[23]
Larcher D, Tarascon J M. Nat. Chem., 2015, 7(1):19.

doi: 10.1038/nchem.2085     pmid: 25515886
[24]
Lei T, Chen W, Lv W, Huang J W, Zhu J, Chu J W, Yan C Y, Wu C Y, Yan Y C, He W D, Xiong J, Li Y R, Yan C L, Goodenough J B, Duan X F. Joule, 2018, 2(10):2091.

doi: 10.1016/j.joule.2018.07.022     URL    
[25]
Hu Y X, Zhu X B, Wang L Z. ChemSusChem, 2020, 13(6):1366.

doi: 10.1002/cssc.v13.6     URL    
[26]
Jana M, Xu R, Cheng X B, Yeon J S, Park J M, Huang J Q, Zhang Q, Park H S. Energy Environ. Sci., 2020, 13(4):1049.

doi: 10.1039/C9EE02049G     URL    
[27]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18):7633.

doi: 10.1021/acs.chemmater.7b02847     URL    
[28]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10):9507.

doi: 10.1021/acsnano.5b03591     pmid: 26208121
[29]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):1.
[30]
Giri A, Yang H, Thiyagarajan K, Jang W, Myoung J M, Singh R, Soon A, Cho K, Jeong U. Adv. Mater., 2017, 29(26):1700291.

doi: 10.1002/adma.v29.26     URL    
[31]
Balcı E, Akkuş Ü Ö, Berber S. J. Mater. Chem. C, 2017, 5(24):5956.

doi: 10.1039/C7TC01765K     URL    
[32]
Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M. Small, 2015, 11(6):640.

doi: 10.1002/smll.201402041     URL    
[33]
Bao W Z, Liu L, Wang C Y, Choi S, Wang D, Wang G X. Adv. Energy Mater., 2018, 8(13):1702485.

doi: 10.1002/aenm.v8.13     URL    
[34]
Bao W Z, Su D W, Zhang W X, Guo X, Wang G X. Adv. Funct. Mater., 2016, 26(47):8746.

doi: 10.1002/adfm.v26.47     URL    
[35]
Zhou G M, Li L, Wang D W, Shan X Y, Pei S F, Li F, Cheng H M. Adv. Mater., 2015, 27(4):641.

doi: 10.1002/adma.201404210     URL    
[36]
Zhai P Y, Peng H J, Cheng X B, Zhu L, Huang J Q, Zhu W C, Zhang Q. Energy Storage Mater., 2017, 7:56.
[37]
Zhang L L, Wan F, Wang X Y, Cao H M, Dai X, Niu Z Q, Wang Y J, Chen J. ACS Appl. Mater. Interfaces, 2018, 10(6):5594.

doi: 10.1021/acsami.7b18894     URL    
[38]
Harris K J, Bugnet M, Naguib M, Barsoum M W, Goward G R. J. Phys. Chem. C, 2015, 119(24):13713.

doi: 10.1021/acs.jpcc.5b03038     URL    
[39]
Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10):4462.

doi: 10.1021/nl2027684     URL    
[40]
Liu F F, Jin S, Xia Q X, Zhou A G, Fan L Z J. Energ. Chem, 2021, 62:220.
[41]
Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. ACS Appl. Mater. Interfaces, 2015, 7(24):13707.

doi: 10.1021/acsami.5b03737     URL    
[42]
Ren C G, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. J. Phys. Chem. Lett., 2015, 6(20):4026.

doi: 10.1021/acs.jpclett.5b01895     URL    
[43]
Liang X, Garsuch A, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(13):3907.

doi: 10.1002/anie.201410174     URL    
[44]
Lin C, Zhang W K, Wang L, Wang Z G, Zhao W, Duan W H, Zhao Z G, Liu B, Jin J. J. Mater. Chem. A, 2016, 4(16):5993.

doi: 10.1039/C5TA10307J     URL    
[45]
Song J J, Su D W, Xie X Q, Guo X, Bao W Z, Shao G J, Wang G X. ACS Appl. Mater. Interfaces, 2016, 8(43):29427.

doi: 10.1021/acsami.6b09027     URL    
[46]
Guo D, Ming F W, Su H, Wu Y Q, Wahyudi W, Li M L, Hedhili M N, Sheng G, Li L J, Alshareef H N, Li Y X, Lai Z P. Nano Energy, 2019, 61:478.

doi: 10.1016/j.nanoen.2019.05.011     URL    
[47]
Li N, Xie Y, Peng S T, Xiong X, Han K. J. Energy Chem., 2020, 42:116.

doi: 10.1016/j.jechem.2019.06.014     URL    
[48]
Jiang G Y, Zheng N, Chen X, Ding G Y, Li Y H, Sun F G, Li Y S. Chem. Eng. J., 2019, 373:1309.

doi: 10.1016/j.cej.2019.05.119     URL    
[49]
Ogoke O, Wu G, Wang X L, Casimir A, Ma L, Wu T P, Lu J. J. Mater. Chem. A, 2017, 5(2):448.

doi: 10.1039/C6TA07864H     URL    
[50]
Bugga R V, Jones S C, Pasalic J, Seu C S, Jones J P, Torres L. J. Electrochem. Soc., 2016, 164(2):A265.

doi: 10.1149/2.0941702jes     URL    
[51]
Duphil D, Bastide S, Lévy-Clément C. J. Mater. Chem., 2002, 12(8):2430.

doi: 10.1039/B202162E     URL    
[52]
Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8(1):63.

doi: 10.1002/smll.201101016     URL    
[53]
Stephenson T, Li Z, Olsen B, Mitlin D. Energy Environ. Sci., 2014, 7(1):209.

doi: 10.1039/C3EE42591F     URL    
[54]
Wilson J A, Yoffe A D. Adv. Phys., 1969, 18(73):193.

doi: 10.1080/00018736900101307     URL    
[55]
Liu S F, Zhou Z F, Liu D C. Ceram. Int., 2019, 45(11):14415.

doi: 10.1016/j.ceramint.2019.04.160     URL    
[56]
Ghazi Z A, He X, Khattak A M, Khan N A, Liang B, Iqbal A, Wang J X, Sin H, Li L S, Tang Z Y. Adv. Mater., 2017, 29(21):1606817.

doi: 10.1002/adma.201606817     URL    
[57]
Tan L, Li X H, Wang Z X, Guo H J, Wang J X. ACS Appl. Mater. Interfaces, 2018, 10(4):3707.

doi: 10.1021/acsami.7b18645     URL    
[58]
Dong Y F, Lu P F, Shi H D, Qin J Q, Chen J, Ren W C, Cheng H M, Wu Z S. J. Energy Chem., 2019, 36:64.

doi: 10.1016/j.jechem.2019.04.023     URL    
[59]
Pan H Y, Tan Z, Zhou H H, Jiang L L, Huang Z Y, Feng Q X, Zhou Q, Ma S, Kuang Y F. J. Energy Chem., 2019, 39:101.

doi: 10.1016/j.jechem.2019.01.019     URL    
[60]
Bai S Y, Liu X Z, Zhu K, Wu S C, Zhou H S. Nat. Energy, 2016, 1(7):1.

doi: 10.1038/ng0492-1     URL    
[61]
Chen G P, Song X, Wang S Q, Chen X Z, Wang H H. J. Power Sources, 2018, 408:58.

doi: 10.1016/j.jpowsour.2018.10.078     URL    
[62]
Yao S S, Cui J, Huang J Q, Lu Z H, Deng Y, Chong W G W, Wu J X, Ihsan-Ul-Haq M, Ciucci F, Kim J K. Adv. Energy Mater., 2018, 8(24):1800710.

doi: 10.1002/aenm.v8.24     URL    
[63]
Chen D D, Huang S, Zhong L, Wang S J, Xiao M, Han D M, Meng Y Z. Adv. Funct. Mater., 2020, 30(7):1907717.

doi: 10.1002/adfm.v30.7     URL    
[64]
Li B Q, Peng H J, Chen X, Zhang S Y, Xie J, Zhao C X, Zhang Q. CCS Chem., 2019,128.
[65]
Li B Q, Kong L, Zhao C X, Jin Q, Chen X, Peng H J, Qin J L, Chen J X, Yuan H, Zhang Q, Huang J Q. InfoMat, 2019, 1(4):533.

doi: 10.1002/inf2.v1.4     URL    
[66]
Xu R, Sun Y Z, Wang Y F, Huang J Q, Zhang Q. Chin. Chemical Lett., 2017, 28(12):2235.

doi: 10.1016/j.cclet.2017.09.065     URL    
[67]
Wang Y, Zhou L P, Huang J Y, Wang X Y, Xu X L, Lu J G, Tian Y, Ye Z Z, Tang H C, Lee S T, Lu Y Y. Adv. Funct. Mater., 2020, 30(12):1910331.

doi: 10.1002/adfm.v30.12     URL    
[68]
Tian M, Pei F, Yao M S, Fu Z H, Lin L L, Wu G D, Xu G, Kitagawa H, Fang X L. Energy Storage Mater., 2019, 21:14.
[69]
Chen H H, Xiao Y W, Chen C, Yang J Y, Gao C, Chen Y S, Wu J S, Shen Y, Zhang W N, Li S, Huo F W, Zheng B. ACS Appl. Mater. Interfaces, 2019, 11(12):11459.

doi: 10.1021/acsami.8b22564     URL    
[70]
Lin C, Zhang W K, Wang L, Wang Z G, Zhao W, Duan W H, Zhao Z G, Liu B, Jin J. J. Mater. Chem. A, 2016, 4(16):5993.

doi: 10.1039/C5TA10307J     URL    
[71]
Dong Y F, Zheng S H, Qin J Q, Zhao X J, Shi H D, Wang X H, Chen J, Wu Z S. ACS Nano, 2018, 12(3):2381.

doi: 10.1021/acsnano.7b07672     URL    
[72]
Sun J, Sun Y M, Pasta M, Zhou G M, Li Y Z, Liu W, Xiong F, Cui Y. Adv. Mater., 2016, 28(44):9797.

doi: 10.1002/adma.201602172     URL    
[73]
Fan Y, Liu D, Rahman M M, Tao T, Lei W W, Mateti S, Yu B Z, Wang J M, Yang C, Chen Y. ACS Appl. Energy Mater., 2019, 2(4):2620.

doi: 10.1021/acsaem.8b02205    
[74]
Sun W H, Sun X G, Akhtar N, Li C M, Wang W K, Wang A B, Wang K, Huang Y Q. J. Energy Chem., 2020, 48:364.

doi: 10.1016/j.jechem.2020.02.030     URL    
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[4] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[5] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[6] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[7] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[8] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[9] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[10] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[11] 龚雪, 杨金龙, 姜玉林, 木士春. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014, 26(01): 41-47.
[12] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[13] 张亚萍 陈艳 周元林 何平. 全钒氧化还原液流电池隔膜*[J]. 化学进展, 2010, 22(0203): 384-387.