English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 41-47 DOI: 10.7536/PC130641 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

静电纺丝技术在锂离子动力电池中的应用

龚雪, 杨金龙, 姜玉林, 木士春*   

  1. 武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2013-06-01 修回日期:2013-10-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 木士春,e-mail:msc@whut.edu.cn E-mail:msc@whut.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2012CB215504)和国家自然科学基金项目(No. 51372186)资助

Application of Electrospinning Technique in Power Lithium-Ion Batteries

Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2013-06-01 Revised:2013-10-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Basic Research Development Program of China (973 Program) (No. 2012CB215504) and the National Natural Science Foundation of China (No. 51372186)

锂离子动力电池,作为动力源,要求其具有较高的比容量、倍率性能、热稳定性及优异的循环性能。静电纺丝技术是一种新型纳米纤维制备技术,因其制备的纳米纤维膜具有比表面积大和孔隙率高等特点,近年来在锂离子电池领域得到了广泛应用,有望成为大幅改善锂离子动力电池性能的关键技术。基于锂离子动力电池的特性,当前静电纺丝技术主要用于制备高孔隙率的纳米纤维膜、高分子共混膜及无机-高分子复合膜等隔膜材料以提高隔膜的机械性能和热稳定性;此外,静电纺丝技术还被用于改善磷酸铁锂等聚阴离子型正极材料及石墨负极材料的电化学性能。本文还针对上述研究中存在的问题,提出了未来静电纺丝技术在锂离子动力电池中应用的可改进的研究方案。

As a power source, the power lithium-ion battery requires high capacity density, high rate capacity, good thermal stability as well as excellent cyclic stability. Electrospinning technique (EST), as a novel solution of preparing nanofibers, has been applied in lithium-ion batteries, such as separators with high surface area and porosity, to greatly enhance the electrochemical performance of power lithium-ion batteries. EST is mainly used for the preparation of high porosity nanofiber membrane, polymer blending membrane and inorganic-polymer composite membrane in order to improve the mechanical properties and thermal stabilities of separators. In addition, the obtained nanofiber materials using EST at cathodes or anodes can enhance the electrochemical performance. At last, the existing problems and the corresponding improvements of the regarding studies are pointed out.

Contents
1 Introduction
2 Electrospinning technique
3 Application of electrospinning technique in power lithium-ion battery
3.1 Cathode materials
3.2 Anode materials
3.3 Separators
4 Perspectives

中图分类号: 

()

[1] Wagemaker M, Mulder M F. Acc. Chem. Res., 2013, 46(5): 1206.
[2] Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Lett., 2012, 12: 3315.
[3] Zhong Y J, Li J T, Wu Z G, Guo X D, Zhong B H, Sun S G. J. Power Sources, 2013, 234: 217.
[4] Ding J, Kongz Y, Yang J R. J. Electrochem. Soc., 2012, 159, (8): A1198.
[5] Taylor G. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci., 1964, 280(1382): 383.
[6] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Combust. Sci. Technol., 2003, 63(15): 2223.
[7] 吴大城(Wu D C), 杜仲良(Du Z L), 高绪珊(Gao X S). 纳米纤维(Nanofibers). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2001. 42.
[8] 薛聪(Xue C), 胡影影(Hu Y Y), 黄争鸣(Huang Z M). 高分子通报(Chinese Polymer Bulletin), 2009, (6): 38.
[9] Tompson C J, Chase G G, Yarin A L. Polymer, 2007, 48(23): 6913.
[10] Smit E, Buttner U, Sanerson R D. Polymer, 2005, 46(8): 2419.
[11] 宋叶萍(Song Y P), 熊杰(Xiong J), 谢军军(Xie J J), 霍鹏飞(Huo P F), 王永攀(Wang Y P), 孙芳(Sun F). 纺织学报(Journal of Textile Research), 2009, 30(7): 6.
[12] Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Polymer, 2001, 42(25): 09955.
[13] Andersson A S, Kalska B, Haggstrom L, Thomas J O. Solid State Ionics, 2000, 130(1/2): 41.
[14] Tarascon J M, Armand M. Nature, 2001, 414(15): 359.
[15] Yang J L, Kang X C, Hu L, Gong X, He D P, Peng T, Mu S C. J. Alloys Compd., 2013, 572(25): 158.
[16] Gui Y, Zhao X L, Guo R S. J. Alloys Compd., 2010, 490(1/2): 236.
[17] Yang R, Song X P, Zhao M S, Wang F. J. Alloys Compd., 2009, 468(1/2): 365.
[18] 曹寅(Cao Y), 王子港(Wang Z G), 杨晖(Yang H). 功能材料(Journal of Functional Materials), 2011, 42(3): 448.
[19] Wang Y, Sun B, Jinsoo P, Woo K, Wang G X. J. Alloys Compd., 2011, 509(3): 1040.
[20] Liu Y Y, Cao C B. Electrochim. Acta, 2010, 55(16): 4694.
[21] Yang J L, Kang X C, He D P, Peng T, Hu L, Mu S C. J. Power Sources, DOI: 10.1016/j.jpowsour.2013.05.088.
[22] 张豪杰(Zhang H J), 王开学(Wang K X), 陈接胜(Chen J S). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(3): 641.
[23] 李泓(Li H), 李晶泽(Li J Z), 师丽红(Shi L H), 朱广言(Zhu G Y), 陈锓(Chen Q), 卢威(Lu W), 黄学杰(Huang X J), 陈立泉(Chen L Q). 电化学(Electrochemistry), 2000, 6(2): 131.
[24] 田春霞(Tian C X). 稀有金属(Chinese Journal of Rare Metals), 2002, 26(5): 397.
[25] Toprakci O, Ji L, Lin Z, Toprakci H A K, Zhang X. J. Power Sources, 2011, 196(18): 7692.
[26] Toprakci O, Toprakci H A K, Ji L, Lin Z, Gu R, Zhang X. J. Renewable Sustainable Energy, 2012, 4(1): 013121.
[27] Toprakci O, Toprakci H A K, Ji L, Xu G, Lin Z, Zhang X. ACS Appl. Mater. Interfaces, 2012, 4(3): 1273.
[28] Hagen R V, Lorrmann H, Möller K C, Mathur S. Adv. Energy Mater., 2012, 2(5): 553.
[29] Zhang S, Li Y, Xu G, Li S, Lu Y, Toprakci O, Zhang X. Soft Nanoscience Letters, 2012, 2(3): 54.
[30] Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X. J. Mater. Chem., 2012, 22(29): 14661.
[31] Zhang S, Li Y, Xu G, Li S, Lu Y, Toprakci O, Zhang X. J. Power Sources, 2012, 213: 10.
[32] Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y. J. Electrochem. Soc., 2000, 147(4): 1245.
[33] 赵智泉(Zhao Z Q), 刘庆雷(Liu Q L), 黄大成(Huang D C), 周凤羽(Zhou F Y), 刘元超(Liu Y C), 张荻(Zhang D). 机械功能材料(Materials for Mechanical Engineering), 2012, 36(9): 1.
[34] 段博超(Duan B C), 王维坤(Wang W K), 赵海雷(Zhao H L), 王安邦(Wang A B), 余仲宝(Yu Z B), 杨欲生(Yang Y S). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2012, 41(2): 93.
[35] Obrovac M N, Christensen L. Electrochem. Solid-State Lett., 2004, 7(5): A93.
[36] Ji L, Zhang X. Carbon, 2009, 47(14): 3219.
[37] Ji L, Zhang X. Energy Environ. Sci., 2010, 3(1): 124.
[38] Hwang T H, Lee Y M, Kong B S, Seo J S, Choi J W. Nano Lett., 2012, 12(2): 802.
[39] Bonino C A, Ji L, Lin Z, Toprakci O, Zhang X, Khan S A. ACS Appl. Mater. Interfaces, 2011, 3(7): 2534.
[40] Zhang X, Kumar P S, Aravindan V, Liu H H, Sundaramurthy J, Mhaisalkar S G, Duong H M, Ramakrishna S, Madhavi S. J. Phys. Chem. C, 2012, 116(28): 14780.
[41] Ji L, Toprakci O, Alcoutlabi M, Yao Y, Li Y, Zhang S, Guo B, Lin Z, Zhang X. ACS Appl. Mater. Interfaces, 2012, 4(5): 2672.
[42] 彭久云(Peng J Y), 曾照强(Zeng Z Q), 苗赫濯(Miao H Z). 电源技术(Chinese Journal of Power Sources), 2002, 26(6): 452.
[43] Guo B K, Li Y, Yao Y F, Lin Z, Ji L, Xu G, Liang Y, Shi Q, Zhang X. Solid State Ionics, 2011, 204/205: 61.
[44] Gao K, Hu X G, Dai C S, Yi T F. Mater. Sci. Eng., B, 2006, 131(1/3): 100.
[45] Subramania A, Kalyana S N T, Sathyia P A R, Kumar G A. J. Membr. Sci., 2007, 294(1/2): 8.
[46] 盛晓颖(Sheng X Y), 张学俊(Zhang X J), 刘婷(Liu T). 化工新型材料(New Chemical Materials), 2011, 39(5): 18.
[47] Hwang K, Kwon B, Byun H. J. Membr. Sci., 2011, 378(1/2): 111.
[48] Hao J L, Lei G T, Li Z H, Wu L J, Xiao Q Z, Wang L. J. Membr. Sci., 2013, 428: 11.
[49] Qi W, Lu C, Chen P, Han L, Yu Q, Xu R Q. Mater. Lett., 2012, 66(1): 239.
[50] Jianga G, Maedab S, Yanga H, Saitob Y, Tanasea S, Sakaia T. J. Power Sources, 2005, 141(1): 143.
[51] Kim Y J, Ahn C H, Lee M B, Choi M S. Mater. Chem. Phys., 2011, 127(1/2): 137.
[52] Jung H R, Ju D H, Lee W J, Zhang X, Kotek R. Electrochim. Acta, 2009, 53(13): 3630.
[53] Jeong H S, Choi E S, Lee S Y, Kim J H. J. Membr. Sci., 2012, 415/416: 513.
[54] Zaccaria M, Gualandi C, Fabiani D, Focaret M L, Croce F. Journal of Nanomaterials, 2012, 216012.
[55] Liang Y Z, Ji L, Guo B K, Lin Z, Yao Y, Li Y, Alcoutlabi M, Qiu Y, Zhang X. J. Power Sources, 2011, 196(1): 436.
[56] Lalia B S, Samad Y A, Hashaikeh R. J. Solid State Electrochem., 2013, 17(3): 575.
[57] Ratna D, Divekar S, Patchaiappan S, Samui A B, Chakraborty B C. Polym. Int., 2007, 56(7): 900.
[58] Shubha N, Prasanth R, Hoon H H, Srinivasan M. Mater. Res. Bull., 2013, 48(2): 526.
[59] Jiang Z, Carroll B, Abraham K M. Electrochim. Acta, 1997, 42(17): 2667.
[60] Abbrent S, Pletstil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjö A. Polymer, 2001, 42(4): 1407.
[61] Zhong Z, Cao Q, Jing B, Wang X, Li X, Deng H. Mater. Sci. Eng., B, 2012, 177(1): 86.
[62] Gopalan A I, Santhosh P, Manesh K M, Nho J H, Kim S H, Hwang C G, Lee K P. J. Membr. Sci., 2008, 325(2): 683.
[63] Xiao Q, Li Z, Gao D, Zhang H. J. Membr. Sci., 2009, 326(2): 260.
[64] Raghavan P, Zhao X H, Shin C, Baek D H, Choi J W, Manuel J, Heo M Y, Ahn J H, Nah C. J. Power Sources, 2010, 195(18): 6088.
[65] Ding Y H, Zhang P, Long Z L, Jiang Y, Xu F, Di W. J. Membr. Sci., 2009, 329(1/2): 56.
[66] Wu N, Cao Q, Wang X Y, Chen Q. J. Power Sources, 2011, 196(22): 9751.
[67] Alcoutlabi M, Lee H, Watson J V, Zhang X. J. Membr. Sci., 2013, 48(6): 2690.
[68] Zhu Y S, Xiao S Y, Shi Y, Yang Y Q, Wu Y P. J. Mater. Chem. A. 2013, 1: 7790.

[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[3] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[4] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[5] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[6] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[7] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[8] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[9] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[10] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[11] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[12] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[13] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[14] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[15] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.