English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 111-123 DOI: 10.7536/PC200557 前一篇   后一篇

• 综述 •

金属配合物在双光子荧光探针中的应用研究

谢嘉恩1, 罗雨珩1, 张黔玲1, 张平玉1,*()   

  1. 1 深圳大学化学与环境工程学院 深圳 518055
  • 收稿日期:2020-05-27 修回日期:2020-07-27 出版日期:2021-01-24 发布日期:2020-12-09
  • 通讯作者: 张平玉
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21701113); 深圳市科技计划(JCYJ20190808153209537); 深圳市孔雀人才科研启动(827-000389); 深圳大学科研启动经费(2018036)

Metal Complexes in Application of Two-Photon Luminescence Probes

Jiaen Xie1, Yuheng Luo1, Qianling Zhang1, Pingyu Zhang1,*()   

  1. 1 College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
  • Received:2020-05-27 Revised:2020-07-27 Online:2021-01-24 Published:2020-12-09
  • Contact: Pingyu Zhang
  • Supported by:
    the National Natural Science Foundation of China(21701113); the Science and Technology Foundation of Shenzhen(JCYJ20190808153209537); the Peacock Talent Fund(827-000389); the Natural Science Foundation of SZU(2018036)

金属配合物因其优异的光物理性质,如配位结构可调、好的光稳定性、大的斯托克位移、高的荧光量子产率与长的荧光寿命等, 在生物成像、分子探针、医学影像等领域中备受关注。与单光子吸收相比,双光子吸收的金属配合物因其具有更加优秀的深度分辨率以及低光损伤性等优点,近些年被广泛应用于生物分子的荧光探针和细胞器染料等。本文综述了近年来具有双光子吸收的金属配合物对生物分子(如pH、O2、HClO、NO、SO2、GSH、DNA等)的响应检测用于疾病的诊断,以及作为细胞器(如线粒体、溶酶体、脂滴、细胞核等)染料探针用于细胞内动态行为和演化过程的实时示踪研究。最后,针对金属配合物在生物分子探针以及细胞器染料等方面的应用前景进行了分析和探讨。

During the past years, metal complexes have attracted intensive research interest in biological sensors and imaging of cellular dynamics during a series of biological events. This is due to their unique advantages includes the following:(1) easily tunable chemical and photophysical properties resulting from their synthetic versatility;(2) high emission quantum yields and long phosphorescence lifetimes, which may avoid interferences from background auto-fluorescence;(3) large Stokes shifts for effective discrimination of excitation and emission wavelengths, as well as prevention of fluorescence quenching induced by self-absorption, and(4) emissive properties that are sensitive to subtle changes in the local environment. In recent years, metal complexes with obvious two-photon absorption have been attracted extensive attention in luminescence detection of biomolecules and organelle dyes because of their superior depth resolution and low light damage compared with traditional one-photon absorption. This review describes the latest two-photon absorption metal complexes with detection of biomolecules(pH, O2, HClO, NO, SO2, GSH, DNA, and so on) for diagnosis of diseases, as well as organelle probes(mitochondria, lysosomes, lipid droplets, nucleus, and so on) for intracellular dynamic behaviors and evolution processes. Finally, the perspectives of metal complexes in application of biomolecular probes and organelle dyes were analyzed and discussed.

Contents

1 Introduction

2 Two-photon technology

2.1 Two-photon absorption

2.2 Two-photon emission and two-photon absorption parameters measurement

2.3 Study on two-photon luminescent probes of metal complexes

3 Two-photon luminescent biosensors

3.1 O2

3.2 Amino acids

3.3 DNA

3.4 pH

3.5 SO2

3.6 HClO

3.7 NO

3.8 Metal ions

4 Two-photon luminescent organelle dyes

4.1 Mitochondria

4.2 Lysosomes

4.3 Lipid droplets

4.4 Nucleus

5 Conclusion and outlook

()
图1 双光子(A)和单光子(B)激发的雅布隆斯基图[42]
Fig. 1 Jablonski diagrams of two-photon(A) and one-photon(B) excitation[42]
图2 (A)钌-蒽醌配合物1a~c作为双光子发光探针用于循环缺氧成像的结构示意图;(B)A549细胞与配合物1c在不同氧气浓度下孵育1 h的双光子共聚焦显微镜图像;(C)与配合物1c孵育1 h后,对斑马鱼头部乏氧模型进行双光子共聚焦图像[46]
Fig. 2 (A) Schematic illustration of the ruthenium(Ⅱ) anthraquinone complexes 1a~c as two-photon luminescent hypoxia probes;(B) Two-photon luminescence confocal microscopy images of A549 cancer cells incubated with complex 1c at various oxygen concentrations for 1 h;(C) Two-photon confocal luminescence images of the head of zebrafish under hypoxia after incubation of 1c for 1 h[46]
图3 铱-蒽醌配合物2a~d作为线粒体的乏氧双光子荧光探针的结构机理图[47]
Fig. 3 Detection mechanism of the mitochondrial O2-sensitive iridium(Ⅲ)-anthraquinone complexes 2a~d[47]
图4 (A)响应硫醇的钌-金复合纳米材料RuNH2@AuNPS的合成示意图;(B)用RuNH2@AuNPS孵育1 h的HeLa细胞的单光子和双光子成像图;(C)先用 N-乙基马来酰亚胺(硫醇消除剂)预处理HeLa细胞,然后用RuNH2@AuNPS处理1 h[57]
Fig. 4 (A) Schematic diagram of complex 3 coated on gold nanoparticles;(B) OPM and TPM images of HeLa cells incubated with RuNH2@AuNPS for 1 h;(C) HeLa cells pre-treated with N-ethylmaleimide(NEM) and then treated with RuNH2@AuNPS for 1 h[57]
图5 响应Cys/Hcy的双光子铱配合物4a,b的化学结构图[58]
Fig. 5 The chemical structures of complexes 4a,b for Cys/Hcy two-photon probes[58]
图6 (A)氢化金配合物5a~d在黑暗和光照条件下与巯基分子的反应示意图;(B)10 μM的5b处理1 h的HepG2细胞的单光子和双光子荧光图像[69]
Fig. 6 (A)The reaction scheme of gold(Ⅰ) complexes 5a~d with R-SH in the dark or upon irradiation;(B) One- and two-photon fluorescence images of HepG2 cells treated with 10 μM of 5b for 1 h[69]
图7 (A)配合物6的化学结构式;(B)与配合物6孵育10 min的活HepG2细胞的双光子共聚焦荧光图像;(C)配合物6染色细胞核的STED图;(D)和(E)分别为(B)和(C)放大的共聚焦双光子荧光成像和STED图;(F)共焦双光子荧光成像和STED图的荧光强度剖面图,插图为共聚焦荧光成像和STED图的信噪比,比例尺 = 5 μm[71]
Fig. 7 Fig. 7 (A) The chemical structure of complex 6;(B) Confocal two-photon fluorescence images of living HepG2 cells incubated with 10 μM complex 6 for 10 min(λex= 820 nm, λem = 580~620 nm);(C) The STED micrographs of complex 6 staining the nucleus;(D and E) Amplified confocal two-photon fluorescence imaging and STED micrographs of living HepG2 cells incubated with 10 μM complex 6.(F) The fluorescence intensity profile from confocal two-photon fluorescence imaging and the STED micrographs(inset: S/N ratio of confocal and STED microscopy). The scale bar = 5 μm[71]
图8 配合物7a,b[75] 和8的化学结构式[76]
Fig. 8 Chemical structures of complexes 7a,b[75] and 8[76]
图9 配合物9a,b质子化过程的化学结构式[80]
Fig. 9 The protonated chemical structures of complexes 9a,b[80]
图10 配合物10的化学结构式[86]
Fig. 10 The chemical structure of complex 10[86]
图11 配合物11的化学结构式和与次氯酸根的反应机制[90]
Fig. 11 Reaction mechanism and chemical structure of complex 11[90]
图12 (A)配合物12与NO的反应示意图;(B)加入不同浓度NO后,孵育有配合物12的RAW 264.7细胞的单、双光子荧光成像图;(C)用 LPS、IFN-γ和L-Arg孵育不同时间的配合物12加载的RAW 264.7细胞的PLIM图像。比例尺:10 μm[95]
Fig. 12 (A) Illustration of the reaction of probe complex 12 with NO;(B) One-photon and two-photon phosphorescence and bright field images of the complex 12-loaded RAW 264.7cells after adding different concentrations of NO;(C) PLIM images of the complex 12-loaded RAW 264.7 cells incubated with LPS, IFN-γ and L-Arg at different times. Scale bar: 10 μm[95]
图13 铜配合物13与NO之间的反应示意图[96]
Fig. 13 Illustration of the reaction of complex 13 and NO[96]
图14 (A)配合物14与铜离子的作用机理图;在外源铜处理前后,用配合物14孵育的HeLa细胞的OPM(B)和(C)TPM图像;(D)培养5 d的斑马鱼与配合物14孵育1 h的成像图;(E)用外源铜处理后的斑马鱼与配合物14孵育后的成像图[103]
Fig. 14 (A) The reaction mechanism of complex 14 and Cu 2+;(B) OPM and(C) TPM images of HeLa cells incubated with complex 14 before and after the exogenous Cu source treatment;(D) Luminescence imaging of five-day-old zebrafish incubated with complex 14 for 1 h;(E) Zebrafish incubated with complex 14, then further incubated with the exogenous Cu source treatment[103]
图15 配合物15的化学结构式以及与Hg 2+的反应机理图[113]
Fig. 15 Reaction mechanism and chemical structure of complex 15[113]
图16 配合物16a~f的化学结构[116]
Fig. 16 Chemical structures of complexes 16a~f[116]
图17 配合物17a~e的化学结构[123]
Fig. 17 Chemical structures of complexes 17a~e[123]
图18 (A)配合物18的合成路线图;(B)三维肿瘤球与配合物18经6 h孵育后的双光子荧光图;(C)一个完整肿瘤球体的双光子三维Z-stack图;(D)一个完整肿瘤球体的从上到下不同区段的双光子Z-stack图[131]
Fig. 18 (A) Synthetic route to complexes 18;(B)Two-photon phosphorescent images of 3D tumor spheroids after incubation with complexes 18(2 μM) for 6 h;(C) The two-photon 3D Z-stack images of an intact tumor spheroid;(D) The two-photon Z-stack images from different sections from top to bottom. λex = 750 nm[131]
图19 钌-铂配合物19a,b的自组装过程示意图[132]
Fig. 19 Schematic diagram of the self-assembly process of complexes 19a,b[132]
图20 配合物(A)20a,b[135] 和(B)21的化学结构式[136]
Fig. 20 Chemical structures of complexes(A) 20a,b[135] and(B) 21[136]
图21 配合物(A)22a~d[138] 和(B)23a,b[139] 的化学结构式
Fig. 21 Chemical structures of complexes(A)22a~d[138] and(B)23a,b[139]
[1]
Hu M Y, Li L, Wu H, Su Y, Yang P Y, Uttamchandani M, Xu Q H, Yao S Q. J. Am. Chem. Soc., 2011, 133: 12009.

doi: 10.1021/ja200808y    
[2]
Ingaramo M, York A G, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson G H. Proc. Natl. Acad. Sci. U. S. A. , 2014, 111: 5254.
[3]
Zhao M, Zhang H, Li Y, Ashok A, Liang R, Zhou W, Peng L. Biomed. Opt. Express., 2014, 5: 1296.

doi: 10.1364/BOE.5.001296    
[4]
So P T C, Dong C Y, Masters B R, Berland K M. Annu. Rev. Biomed. Eng., 2000, 2: 399.

doi: 10.1146/annurev.bioeng.2.1.399     URL    
[5]
Sancataldo G, Lavagnino Z, d’Amora M, Zanacchi F C, Diaspro A. Biophys. J., 2015, 108: 326.
[6]
Lee J H, Lee S, Gho Y S, Song I S, Tchah H, Kim M J, Kim K H. Exp. Eye. Res. , 2015, 13: 2101.
[7]
Hammerer F, Garcia G, Chen S, Poyer F, Achelle S, Debuisschert C F, Fichou M P T, Maillard P. J. Org. Chem., 2014, 79: 1406.

doi: 10.1021/jo402658h     URL    
[8]
Bobo M G, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Desce M B, Morere A, Garcia M, Durand amd J O, Raehm L. Angew. Chem., 2011, 123: 11627.

doi: 10.1002/ange.v123.48     URL    
[9]
Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud J F, Flamigni L, Venture B. Angew. Chem. Int. Ed., 2015, 54: 169.

doi: 10.1002/anie.201407537     URL    
[10]
Secret E, Maynadier M, Gallud A, Chaix A, Bouffard E, Bobo M G, Marcotte N, Mongin O, Cheikh K E, Hugues V, Auffan M, Frochot C, Morere A, Maillard P, Desce M B, Sailor M J, Garcia M, Durand J O, Cunin F. Adv. Mater., 2014, 26: 7643.

doi: 10.1002/adma.201403415    
[11]
Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J Q, Rockel H, Rumi M, Wu X L, Marder S R, Perry J W. Nature , 1999, 398: 51.

doi: 10.1038/17989     URL    
[12]
Li L, Wang P, Hu Y, Lin G, Huang W, Zhao Q, Spectrochim. Acta A , 2015, 139: 243.

doi: 10.1016/j.saa.2014.10.122     URL    
[13]
Gao R, Cao D, Guan Y, Yan D P. ACS Appl. Mater. Interfaces , 2015, 7: 9904.

doi: 10.1021/acsami.5b01996     URL    
[14]
Corredor C C, Huang Z L, Belfield K D. Adv. Mater. , 2006, 18: 2910.

doi: 10.1002/(ISSN)1521-4095     URL    
[15]
Chan E M, Levy E S, Cohen B E. Adv. Mater. , 2015, 27: 38.
[16]
Gao Z, Chen Y. RSC Adv., 2015, 5: 20712.

doi: 10.1039/C5RA00095E     URL    
[17]
Sivakumar S, van Veggel F, May P S. J. Am. Chem. Soc., 2007, 129: 620.

doi: 10.1021/ja065378x     URL    
[18]
LaFratta C N, Fourkas J T, Baldacchini T, Farrer R A. Angew. Chem. Int. Ed., 2007, 46: 6238.

doi: 10.1002/anie.v46:33     URL    
[19]
Dvornikov A S, Walker E P, Rentzepis P M. J. Phys. Chem. A , 2009, 113: 13633.

doi: 10.1021/jp905655z     URL    
[20]
Denk W, Strickler J H, Webb W W. Science , 1990, 248: 73.

doi: 10.1126/science.2321027     URL    
[21]
Squirrell J M, Wokosin D L, White J G, Bavister B D. Nat. Biotechnol. , 1999, 17: 763.

doi: 10.1038/11698     URL    
[22]
Masanta G, Lim C S, Kim H J, Han J H, Kim H M, Cho B R. J. Am. Chem. Soc., 2011, 133: 5698.

doi: 10.1021/ja200444t    
[23]
Lim C S, Masanta G, Kim H J, Han J H, Kim H M, Cho B R. J. Am. Chem. Soc., 2011, 133: 11132.

doi: 10.1021/ja205081s    
[24]
Bae S K, Heo C H, Choi D J, Sen D, Joe E H, Cho B R, Kim H M. J. Am. Chem. Soc., 2013, 135: 9915.

doi: 10.1021/ja404004v     URL    
[25]
Kim H M, Cho B R. Acc. Chem. Res., 2009, 42: 863.

doi: 10.1021/ar800185u     URL    
[26]
Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S, Neurosci J. Meth., 2001, 111: 29.
[27]
Sakadži S, Roussakis E, Yaseen M A, Mande-ville E T, Srinivasan V J, Arai K, Ruvinskaya S, Devor A, Lo E H, Vinogradov S A, Boas D A. Nat. Meth., 2010, 7: 755.

doi: 10.1038/nmeth.1490     URL    
[28]
Lin Q, Huang Q, Li C, Bao C, Liu Z, Li F, Zhu L. J. Am. Chem. Soc., 2010, 132: 10645.

doi: 10.1021/ja103415t     URL    
[29]
Jimenez C M, Croissant J, Maynadier M, Cattoen X, Man M W C, Vergnaud J, Chaleix V, Sol V, Garcia M, Bobo M G, Raehma L, Durand J O. J. Mater. Chem. B , 2015, 18: 3681.
[30]
Layland K S, Riemann I, Damour O, Stock U A, Konig K. Adv. Drug Deliver. Rev., 2006, 58: 878.

doi: 10.1016/j.addr.2006.07.004     URL    
[31]
Nemoto T, Kawakami R, Hibi T, Iijima K, Otomo K. Microscopy (Tokyo ), 2015, 64: 9.

doi: 10.1093/jmicro/dfu110     URL    
[32]
Pawlicki M, Collins H A, Denning R G, Anderson H L. Angew. Chem. Int. Ed., 2009, 48: 3244.

doi: 10.1002/anie.v48:18     URL    
[33]
Yao S, Belfield K D. Eur. J. Org. Chem. , 2012, 17: 3199.
[34]
Kaiser W K, Garrett C G B. Phys. Rev. Lett., 1961, 7: 229.

doi: 10.1103/PhysRevLett.7.229     URL    
[35]
Tian H, Feng Y, Mater J. Chem , 2008, 18: 1617.
[36]
Lu L H, Chan D S H, Kwong D W J, He H Z, Leung C H, Ma D L. Chem. Sci., 2014, 5: 4561.

doi: 10.1039/c4sc02032d    
[37]
Wang X, Nguyen D M, Yanez C O, Rodriguez L, Ahn H Y, Bondar M V, Belfield K D. J. Am. Chem. Soc., 2010, 132: 12237.

doi: 10.1021/ja1057423     URL    
[38]
Botchway S W, Charnley M, Haycock J W, Parker A W, Rochester D L, Weinstein J A, Williams J A G. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 16071.
[39]
Wang J M , Shi L , Liu H Y . Progress in Chemistry , 2015, 27: 755.

doi: 10.7536/PC150227     URL    
王家敏, 史蕾, 刘海洋. 化学进展, 2015, 27: 755.

doi: 10.7536/PC150227     URL    
[40]
He L , Tang C P , Cao Q , Mao Z W . Progress in Chemistry , 2018, 30: 1548.
何良, 谭彩萍, 曹乾, 毛宗万. 化学进展, 2018, 30: 1548.
[41]
Qiu K Q , Zhu H Y , Ji L N , Chao H . Progress in Chemistry , 2018, 30: 1524.
邱康强, 朱宏翊, 计亮年, 巢晖. 化学进展, 2018, 30: 1524.
[42]
Encyclopedia of Life Sciences, John Wiley & Sons, Ltd., Chichester , 2002.
[43]
Kizaka-Kondoh S , Inoue M , Harada H , Hiraoka M . Cancer Sci ., 2003, 94( 12): 1021.

doi: 10.1111/cas.2003.94.issue-12     URL    
[44]
Thambi T, Deepagan V G, Yoon H Y, Han H, Kim S H, Son S, Jo D G, Ahn C H, Suh Y D, Kim K, Kwon I C, Lee D S, Park J H. Biomaterials , 2014, 35: 1735.

doi: 10.1016/j.biomaterials.2013.11.022    
[45]
Anada T, Fukuda J, Sai Y, Suzuki O. Biomaterials , 2012, 33: 8430.

doi: 10.1016/j.biomaterials.2012.08.040    
[46]
Zhang P, Huang H, Chen Y, Wang J, Ji L, Chao H. Biomaterials , 2015, 53: 522.

doi: 10.1016/j.biomaterials.2015.02.126     URL    
[47]
Sun L, Chen Y, Kuang S, Li G, Guan R, Liu J, Ji L, Chao H. Chem. Eur. J., 2016, 22: 8955.

doi: 10.1002/chem.201600310     URL    
[48]
Medzhitov R, Schneider D S, Soares M P. Science , 2012, 335: 936.

doi: 10.1126/science.1214935     URL    
[49]
Sua D D, Teoha C L, Sahua S, Dasa R K, Chang Y T. Biomaterials , 2014, 35: 6078.

doi: 10.1016/j.biomaterials.2014.04.035    
[50]
Ren W X, Han J Y, Pradhan T, Lim J Y, Lee J H, Lee J, Kim J H, Kim J S. Biomaterials , 2014, 35: 4157.

doi: 10.1016/j.biomaterials.2014.01.055    
[51]
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. Biol. Chem., 2014, 395: 203.

doi: 10.1515/hsz-2013-0241     URL    
[52]
Chen X, Zhou Y, Peng X, Yoon J. Chem. Soc. Rev., 2010, 39: 2120.

doi: 10.1039/b925092a     URL    
[53]
Jung H S, Han J H, Pradhan T, Kim S, Lee S W, Sessler J L, Sessler J L, Kim T W, Kang C, Kim J S. Biomaterials , 2012, 33: 945.

doi: 10.1016/j.biomaterials.2011.10.040    
[54]
Jung H S, Pradhan T, Han J H, Heo K J, Lee J H, Kang C, Kim J S. Biomaterials , 2012, 33: 8495.

doi: 10.1016/j.biomaterials.2012.08.009    
[55]
Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C. J. Am. Chem. Soc., 2007, 129: 10322.

doi: 10.1021/ja073140i     URL    
[56]
Shao N, Jin J Y, Cheung S M, Yang R H, Chan W H, Mo T. Angew. Chem. Int. Ed., 2006, 118: 5066.

doi: 10.1002/(ISSN)1521-3757     URL    
[57]
Zhang P , Wang J , Huang H , Chen H , Guan R , Chen Y , Ji L , Chao H . Biomaterials , 2014, 35( 32): 9003.

doi: 10.1016/j.biomaterials.2014.07.021    
[58]
Wang H , Hu L , Du W , Tian X , Hu Z , Zhang Q , Zhou H , Wu J , Uvdal K , Tian Y . Sens. Actuators B , 2018, 255( 1): 408.

doi: 10.1016/j.snb.2017.08.074     URL    
[59]
Pizarro A M, Habtemariam A, Sadler P J. Top. Organomet. Chem. , 2010, 32: 21.
[60]
Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L. Med. Res. Rev. , 2010, 30: 550.

doi: 10.1002/med.20168     URL    
[61]
Mulcahy S P, Meggers E. Top. Organomet. Chem., 2010, 32: 141.
[62]
Köster S D, Alborzinia H, Can S, Kitanovic I, Wölfl S, Rubbiani R, Ott I, Riesterer P, Prokop A, Merz K, Metzler-Nolte N. Chem. Sci. , 2012, 3: 2062.

doi: 10.1039/c2sc01127a    
[63]
Oehninger L, Rubbiani R, Ott I. Dalton Trans., 2013, 42: 3269.

doi: 10.1039/C2DT32617E     URL    
[64]
Berners-Price S J, Barnard P J. Ligand Design in Medicinal Inorganic Chemistry , John Wiley & Sons, Ltd. , 2014.
[65]
Bertrand B, Casini A. Dalton Trans., 2014, 43: 4209.

doi: 10.1039/C3DT52524D     URL    
[66]
Nardon C, Boscutti G, Fregona D. Anticancer Res., 2014, 34: 487.
[67]
Frik M, Fernández-Gallardo J, Gonzalo O, Mangas-Sanjuan V, González-Alvarez M, Serrano del Valle A, Hu C, González-Alvarez I, Bermejo M, Marzo I, Contel M. J. Med. Chem., 2015, 58: 5825.

doi: 10.1021/acs.jmedchem.5b00427     URL    
[68]
FernándezGallardo J, Elie B T, Sadhukha T, Prabha S, Sanaú M, Rotenberg S A, Ramos J W, Contel M. Chem. Sci., 2015, 6: 5269.

doi: 10.1039/C5SC01753J     URL    
[69]
Luo H, Cao B, Chan A S C, Sun W, Zou T. Angew. Chem., 2020, 132: 2.

doi: 10.1002/ange.v132.1     URL    
[70]
Creighton T E. Trends Biochem. Sci., 1999, 2: 1147.
[71]
Zhang Q, Lu X, Wang H, Tian X, Wang A, Zhou H, Wu J, Tian Y. Chem. Commun., 2018, 54: 3771.

doi: 10.1039/C8CC00908B     URL    
[72]
Hong Y, Chen S, Leung C W T, Lam J W Y, Tang B Z. Chem. Asian J., 2013, 8: 1806.

doi: 10.1002/asia.v8.8     URL    
[73]
Kanony C , Akerman B , Tuite E. J. Am. Chem. Soc., 2001, 123: 7985.

doi: 10.1021/ja001047n     URL    
[74]
Kim D, Ryu H G, Ahn K H. Org. Biomol. Chem., 2014, 12: 4550.

doi: 10.1039/C4OB00431K     URL    
[75]
Baggaley E, Gill M R, Green N H, Turton D, Sazanovich I, Botchway S W, Smythe C, Haycock J W, Weinstein J A, Thomas J A. Angew. Chem. Int. Ed., 2014, 53: 3367.

doi: 10.1002/anie.201309427     URL    
[76]
Wang X, Tian X, Zhang Q, Sun P, Wu J, Zhou H, Jin B, Yang J, Zhang S, Wang C, Tao X, Jiang M, Tian Y. Chem. Mater., 2012, 24( 5): 954.

doi: 10.1021/cm2029855     URL    
[77]
Friedman J R, Nunnari J. Nature , 2014, 505: 335.

doi: 10.1038/nature12985    
[78]
Wallace D C. Nat. Rev. Cancer , 2012, 12: 685.

doi: 10.1038/nrc3365     URL    
[79]
Chance B, Sies H, Boveris A. Physiol. Rev., 1979, 59: 527.
[80]
Qiu K, Ke L, Zhang X, Liu Y, Rees T W, Ji L, Diao J, Chao H. Chem. Commun., 2018, 54: 2421.

doi: 10.1039/C8CC00299A     URL    
[81]
Vally H, Misso N L, Madan V. Clin. Exp. Allergy., 2009, 39: 1643.

doi: 10.1111/cea.2009.39.issue-11     URL    
[82]
Ji A J, Savon S R, Jacobsen D W. Clin. Chem., 1995, 41: 897.

doi: 10.1093/clinchem/41.6.897     URL    
[83]
Wang X B, Jin H F, Tang C S, Du J B. Eur. J. Pharmacol., 2011, 670: 1.

doi: 10.1016/j.ejphar.2011.08.031     URL    
[84]
Li X, Bazer F W, Gao H, Jobgen W, Johnson G A, Li P, McKnight J R, Satterfield M C, Spencer T E, Wu G. Amino Acids , 2009, 37: 65.

doi: 10.1007/s00726-009-0264-5     URL    
[85]
Wang X B, Du J B, Cui H. Life Sci., 2014, 98: 63.

doi: 10.1016/j.lfs.2013.12.027    
[86]
Li G, Chen Y, Wang J, Lin Q, Zhao J, Ji L, Chao H. Chem. Sci., 2013, 4: 4426.

doi: 10.1039/c3sc52301b    
[87]
Winterbourn C C, Hampton M B, Livesey J H, Kettle A J. J. Biol. Chem., 2006, 281: 39860.

doi: 10.1074/jbc.M605898200     URL    
[88]
Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4: 973.

doi: 10.1038/NCHEM.1500    
[89]
Yap Y W, Whiteman M, Cheung N S. Cell Signal , 2007, 19: 219.

doi: 10.1016/j.cellsig.2006.06.013     URL    
[90]
Li G Y, Lin Q, Sun L, Feng C, Zhang P, Yu B, Chen Y, Wen Y, Wang H, Ji L N, Chao H. Biomaterials , 2015, 53: 285.

doi: 10.1016/j.biomaterials.2015.02.106     URL    
[91]
Faro M L L, Fox B, Whatmore J L, Winyard P G, Whiteman M. Nitric Oxide , 2014, 41: 38.

doi: 10.1016/j.niox.2014.05.014     URL    
[92]
Riccio D A, Schoenfisch M H. Chem. Soc. Rev., 2012, 41: 3731.

doi: 10.1039/c2cs15272j     URL    
[93]
Gladwin M T, Kim-Shapiro D B. Nature , 2012, 491: 344.

doi: 10.1038/nature11640     URL    
[94]
Lundberg J O, Gladwin M T, Weitzberg E. Nat. Rev. Drug Discovery , 2015, 14: 623.
[95]
Wu W , Guan R , Liao X , Yan X, Rees T W, Ji L N, Chao H. Anal. Chem., 2019, 91: 15.
[96]
Ghosh M, van den Akker N M, Wijnands K A, Poeze M, Weber C, McQuade L E, Pluth M D, Lippard S J, Post M J, Molin D G, van Zandvoort M A. PLoS One , 2013, 8( 9): 75331.
[97]
Thompson K H, Orvig C. Science , 2003, 300: 936.

doi: 10.1126/science.1083004     URL    
[98]
Lippard S J, Berg J. University Science Books , Mill Valley, CA , 1994.
[99]
Tapiero H, Townsend D M, Tew K D. Biomed. Pharmacother. , 2003, 57: 386.

doi: 10.1016/S0753-3322(03)00012-X     URL    
[100]
Gaggelli E, Kozlowski H, Valensin D, Valensin G. Chem . Rev. , 2006, 106: 1995.
[101]
Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013, 113: 192.
[102]
Denk W, Strickler J H, Webb W W. Science , 1990, 248: 73.

doi: 10.1126/science.2321027     URL    
[103]
Zhang P, Pei L, Chen Y, Xu W, Lin Q, Wang J, Wu J, Shen Y, Ji L, Chao H. Chem. Eur. J., 2013, 19: 15494.

doi: 10.1002/chem.v19.46     URL    
[104]
Nolan E M, Lippard S J. Chem. Rev. , 2008, 108: 3443.

doi: 10.1021/cr068000q     URL    
[105]
Clifton J C. Pediatr. Clin. N. Am. , 2007, 54: 237.
[106]
Yang Z D, Feng J K, Ren A M. Inorg. Chem., 2008, 47: 10841.

doi: 10.1021/ic800417g     URL    
[107]
Shao P, Li Y, Yi J, Pritchett T M, Sun W. Inorg. Chem., 2010, 49: 4507.

doi: 10.1021/ic902281a     URL    
[108]
Flynn D C, Ramakrishna G, Yang H B, Northrop B H, Stang P J, Goodson T. J. Am. Chem. Soc., 2010, 132: 1348.

doi: 10.1021/ja9082655     URL    
[109]
Tao C H, Yang H, Zhu N, Yam V W W, Xu S J. Organometallics , 2008, 27: 5453.

doi: 10.1021/om800338x     URL    
[110]
Shi H F , Zhao Q , An Z F , Xu W J , Liu S J , Huang W . Progress in Chemistry , 2010, 22: 1741.
史慧芳, 赵强, 安众福, 许文娟, 刘淑娟, 黄维. 化学进展, 2010, 22: 1741.
[111]
Flynn D C, Ramakrishna G, Yang H B, Northrop B H, Stang P J, Goodson T. J. Am. Chem. Soc., 2010, 132: 1348.
[112]
Tao C H, Yang H, Zhu N, Yam V W W, Xu S J. Organometallics , 2008, 27: 5453.

doi: 10.1021/om800338x     URL    
[113]
Zhang J F, Lim C S, Cho B R, Kim J S. Talanta , 2010, 83: 658.

doi: 10.1016/j.talanta.2010.10.016     URL    
[114]
Vaupel P, Schlenger K, Knoop C, Hockel M. Cancer Res., 1991, 51: 3316.
[115]
Qiu K, Chen Y, Rees T W, Ji L, Chao H. Coord. Chem. Rev., 2019, 378: 66.

doi: 10.1016/j.ccr.2017.10.022     URL    
[116]
Liang H, Li Z, Zhang D, Liang H, Liu W, Yang J, Tan C, Ji L, Mao Z. Chem. Sci. , 2019, 10 : 1285
[117]
Henze K, Martin W. Nature , 2003, 42: 127.
[118]
Green D R. Cell , 1998, 94: 695.

doi: 10.1016/S0092-8674(00)81728-6     URL    
[119]
Bossy-Wetzel E, Barsoum M J, Godzik A, Schwarzenbacher R, Lipton S A. Curr. Opin. Cell. Biol., 2003, 15: 706.

doi: 10.1016/j.ceb.2003.10.015     URL    
[120]
Liesa M, Palacín M, Zorzano A. Physiol. Rev., 2009, 89: 799.

doi: 10.1152/physrev.00030.2008     URL    
[121]
Korobova F, Ramabhadran V, Higgs H N. Science , 2013, 339: 464.

doi: 10.1126/science.1228360     URL    
[122]
Komatsu H, Shindo Y, Oka K, Hill J P, Ariga K. Angew. Chem. Int. Ed., 2014, 53: 3993.

doi: 10.1002/anie.201311192     URL    
[123]
Huang H, Yang L, Zhang P, Qiu K, Huang J, Chen Y, Diao J, Liu J, Ji L, Long J, Chao H. Biomaterials , 2016, 83: S0142961216000168.
[124]
Luzio J P, Pryor P R, Bright N A. Nat. Rev. Mol. Cell Biol., 2007, 8: 622.

doi: 10.1038/nrm2217     URL    
[125]
Saftig P, Klumperman J. Nat. Rev. Mol. Cell Biol. , 2009, 10: 623.
[126]
Repnik U, Turk B. Mitochondrion , 2010, 10: 662.

doi: 10.1016/j.mito.2010.07.008     URL    
[127]
Guicciardi M E, Leist M. Gores G J. Oncogene , 2004, 23: 2881.

doi: 10.1038/sj.onc.1207512     URL    
[128]
Ghosh M, Carlsson F, Laskar A, Yuan X M, Li W. FEBS Lett. , 2011, 585: 623.

doi: 10.1016/j.febslet.2010.12.043    
[129]
Hu Q, Bally M B, Madden T D. Nucleic Acids Res., 2002, 30: 3632.

doi: 10.1093/nar/gkf448     URL    
[130]
Shi H, He X, Yuan Y, Wang K, Liu D. Anal. Chem., 2010, 82: 2213.
[131]
Qiu K, Huang H, Liu B, Liu Y, Huang Z, Chen Y, Ji L, Chao H. ACS Appl. Mater. Interfaces , 2016, 8: 12702.

doi: 10.1021/acsami.6b03422     URL    
[132]
Zhou Z , Liu J , Huang J , Rees T W, Wang Y , Wang H , Li X , Chao H , Stang P J. Proc. Natl. Acad. Sci. U. S. A., 2019, 116, 41: 20296.
[133]
Farese R V, Walther T C. Cell , 2009, 139: 855.

doi: 10.1016/j.cell.2009.11.005     URL    
[134]
Fujimoto T, Parton R G. Perspect. Biol., 2011, 3: a004838.
[135]
Liang H, Cao J J, Zhang D Y, Hao L, Zhang M F, Tan C, Ji L, Mao Z. Sens. Actuators B , 2018, 262: 313.

doi: 10.1016/j.snb.2018.02.022     URL    
[136]
Koshel E I, Chelushkin P S, Melnikov A S, Serdobintsev P Y, Stolbovaia A Y, Saifitdinova A F, Shcheslavskiy V I, Chernyavskiy O, Gaginskaya E R, Koshevoy I O, Tunik S P. J. Photochem. Photobiol. A , 2017, 332: 122.
[137]
Zwerger M, Ho C Y, Lammerding J. Annu. Rev. Biomed. Eng. , 2011, 13: 397.

doi: 10.1146/annurev-bioeng-071910-124736    
[138]
Tian X, Zhang Q, Zhang M, Uvdal K, Wang Q, Chen J, Du W, Huang B, Wua J, Tian Y. Chem. Sci. , 2017, 8: 142.

doi: 10.1039/C6SC02342H     URL    
[139]
Zhang Q, Zhang M, Wang H, Tian X, Ma W, Luo L, Wu J, Zhou H, Li S, Tian Y. J. Inorg. Biochem., 2019, 192: 1.

doi: 10.1016/j.jinorgbio.2018.12.001     URL    
[1] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[2] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[3] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[4] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[5] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[6] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[7] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[8] 杨欣达, 姜琴, 施鹏飞*. 具有双光子效应的多核配合物[J]. 化学进展, 2018, 30(8): 1172-1185.
[9] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[10] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[11] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[12] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[13] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.
[14] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[15] 赵艳, 郭彩红, 武海顺. 几类过渡金属配合物催化的烯烃硅氢化反应机理[J]. 化学进展, 2014, 26(0203): 345-357.