English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 124-135 DOI: 10.7536/PC200684 前一篇   后一篇

• 综述 •

高陶瓷含量复合固态电解质

刘秋艳1,2, 王雪锋1,*(), 王兆翔1,2,*(), 陈立泉1   

  1. 1 中国科学院物理研究所 北京 100190
    2 中国科学院大学材料与光电技术学院 北京 100049
  • 收稿日期:2020-06-28 修回日期:2020-08-16 出版日期:2021-01-24 发布日期:2020-09-10
  • 通讯作者: 王雪锋, 王兆翔
  • 作者简介:
    * Corresponding author e-mail: (Xuefeng Wang); (Zhaoxiang Wang)

Composite Solid Electrolytes with High Contents of Ceramics

Qiuyan Liu1,2, Xuefeng Wang1,*(), Zhaoxiang Wang1,2,*(), Liquan Chen1   

  1. 1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-06-28 Revised:2020-08-16 Online:2021-01-24 Published:2020-09-10
  • Contact: Xuefeng Wang, Zhaoxiang Wang

全固态锂二次电池兼具高能量密度和高安全性特点。高陶瓷含量的陶瓷-聚合物复合固态电解质综合了聚合物电解质的柔韧性和陶瓷电解质的高机械强度与高锂离子迁移数等优点,有望优先其他形式固态电解质应用于全固态锂二次电池。本文在简要介绍固态复合电解质后,重点从复合电解质膜的性能特点与制备方法、陶瓷-聚合物界面相互作用以及由此导致的新的离子传导机制等方面介绍高陶瓷含量陶瓷-聚合物复合固态电解质的研究进展。最后,展望了复合固态电解质所面临的一些基础科学与应用问题,并从陶瓷-聚合物界面相互作用角度提出未来复合固态电解质的研究方向和可能的解决方案。我们希望本文对于其他传导离子的复合电解质也有借鉴和启发意义。

The all-solid secondary lithium batteries are characteristic of high energy density and high safety. Combining the high flexibility of the polymer electrolytes and the high mechanical strength and high Li-ion transference number of the ceramic electrolytes, the ceramic-polymer composite solid electrolytes with high ceramic contents(HCC) are expected to find applications prior to the other solid electrolytes in the all-solid secondary lithium batteries. Following a brief introduction on the composite solid electrolytes, the recent advances of the HCC ceramic-polymer composite electrolyte are reviewed in the general performances of the composite electrolytes, the fabrications of their membranes, the ceramic-polymer interfacial interactions and the resultant new ionic transport mechanisms. At the end of this review, we prospect the fundamental and applicable issues that the HCC composite electrolytes have to meet and propose the future research directions and possible solutions to these questions. We wish that this review could be of help for the R&D of the composite solid electrolytes of other ions as well.

Contents

1 Introduction

2 Composite solid electrolytes with high ceramic contents

2.1 Characteristics of high ceramic-contents composite electrolytes

2.2 Fabrication of high ceramic-content composite membranes

3 Ceramic-polymer interactions and extra Li-ion transport passage

3.1 Ceramic-polymer interfacial interactions

3.2 Optimization of ceramic-polymer composite electrolytes

4 Conclusion and perspectives

()
表1 一些高陶瓷含量复合固态电解质及其性质[30,32,33,38,40,43,44,54,58 ?~60,103,106 ? ?~109]
Table 1 Some composite solid electrolytes with high contents of ceramics[30,32,33,38,40,43,44,54,58 ?~60,103,106 ? ?~109]
[1]
Li L S, Deng Y F, Chen G H. Journal of Energy Chemistry , 2020, 50: 154.
[2]
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Advanced Science , 2020, 7( 5): 1903088.
[3]
Lv F, Wang Z Y, Shi L Y, Zhu J F, Edstrom K, Mindemark J, Yuan S. Journal of Power Sources , 2019, 441: 227175.
[4]
Cheng X B , Zhang Q . Progress in Chemistry , 2018, 30( 1): 51.
程新兵, 张强. 化学进展, 2018, 30( 1): 51.
[5]
Hou Z, Zhang J L, Wang W H, Chen Q W, Li B H, Li C L. Journal of Energy Chemistry , 2020, 45: 7.

doi: 10.1016/j.jechem.2019.09.028     URL    
[6]
Lv X J , Meng F L , Wu Y N . China's Ceramics , 2019, 55(4): 1.
吕晓娟, 孟繁丽, 吴亚楠. 中国瓷器, 2019, 55(4): 1.
[7]
Wu M S, Xu B, Luo W W, Sun B Z, Shi J, Ouyang C Y. Applied Surface Science , 2020, 510: 145394.

doi: 10.1016/j.apsusc.2020.145394     URL    
[8]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology , 2019, 31( 13): 132003.

doi: 10.1088/1361-6528/ab5be7     URL    
[9]
Samson A J , Hofstetter K , Bag S , Thangadurai V . Energy & Environment Science , 2019, 12( 10): 2957.
[10]
Garcia-Mendez R, Smith J G, Neuefeind J C, Siegel D J, Sakamoto J. Advanced Energy Materials , 2020, 2000335.
[11]
Zhao F , Qian X M , Wang E K , Dong S J . Progress in Chemistry , 2002, 14( 5): 374.
赵峰, 钱新明, 汪尔康, 董绍俊. 化学进展, 2002, 14( 5): 374.
[12]
Croce F , Appetecchi G B , Persi L , Scrosati B . Nature , 1998, 394( 6692): 456.

doi: 10.1038/28818     URL    
[13]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Applied Materials & Interfaces , 2017, 9( 26): 21773.

doi: 10.1021/acsami.7b03806     URL    
[14]
Wu N, Chien P H, Li Y T, Dolocan A, Xu H H, Xu B Y, Grundish N S, Jin H B, Hu Y Y, Goodenough J B. Journal of the American Chemical Society , 2020, 142( 5): 2497.

doi: 10.1021/jacs.9b12233     URL    
[15]
Song S F , Wu Y M , Tang W P , Deng F , Yao J Y , Liu Z W , Hu R J , Alamusi, Wen Z Y, Lu L, Hu N. ACS Sustainable Chemistry & Engineering , 2019, 7( 7): 7163.
[16]
Chen L, Li W X, Fan L Z, Nan C W, Zhang Q. Advanced Functional Materials , 2019, 29: 1901047.

doi: 10.1002/adfm.v29.28     URL    
[17]
Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 26): 7094.
[18]
Wang S, Zhang L, Li J Y, Zeng Q H, Liu X, Chen P P , Lai W Y, Zhao T, Zhang L Y. Electrochimica Acta , 2019, 320: 134560.

doi: 10.1016/j.electacta.2019.134560     URL    
[19]
Pila C R M, Cappe E P, Mohallem N D, Alves O L, Frutis M A A, Sanchez-Ramirez N, Torresi R M, Ramirez H L, Laffita Y M. Solid State Sciences , 2018, 88: 41.

doi: 10.1016/j.solidstatesciences.2018.10.014     URL    
[20]
Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Nano Letters , 2015, 15: 2740.

doi: 10.1021/acs.nanolett.5b00600     URL    
[21]
Liu W, Lin D C, Sun J, Zhou G M, Cui Y. ACS Nano , 2016, 10: 11407.

doi: 10.1021/acsnano.6b06797     URL    
[22]
Wan J, Xie J, Mackanic D G, Burke W, Bao Z, Cui Y. Materials Today Nano , 2018, 4: 1.

doi: 10.1016/j.mtnano.2018.12.003     URL    
[23]
Zhu L, Zhu P H, Yao S S, Shen X Q, Tu F Y. International Journal of Energy Research , 2019, 43( 9): 4854.

doi: 10.1002/er.v43.9     URL    
[24]
Manuel Stephan A, Nahm K S. Polymer , 2006, 47( 16): 5952.

doi: 10.1016/j.polymer.2006.05.069     URL    
[25]
Chen J M , Xiong J W , Ji S M , Huo Y P , Zhao J W , Liang L . Progress in Chemistry , 2020, 32( 4): 482.
陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁量. 化学进展, 2020, 32( 4): 482.
[26]
Skaarup S, West K, Christiansen B Z. Solid State Ionics , 1988, 28/30: 975.

doi: 10.1016/0167-2738(88)90314-1     URL    
[27]
Inda Y , Katoh T , Baba M . Journal of Power Sources , 2007, 174( 2): 741.

doi: 10.1016/j.jpowsour.2007.06.234     URL    
[28]
Syzdek J , Armand M , Gizowska M , Marcinek M , Sasim E , Szafran M , Wieczorek W . Journal of Power Sources , 2009, 194( 1): 66.

doi: 10.1016/j.jpowsour.2009.01.070     URL    
[29]
Xu X L, Hui K S, Hui K N, Wang H, Liu J B. Materials Horizons , 2020, 7: 1246.

doi: 10.1039/C9MH01701A     URL    
[30]
He Z J, Chen L, Zhang B C, Liu Y C, Fan L Z. Journal of Power Sources , 2018, 392: 232.

doi: 10.1016/j.jpowsour.2018.05.006     URL    
[31]
Keller M, Appetecchi G B, Kim G T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S. Journal of Power Sources , 2017, 353: 287.

doi: 10.1016/j.jpowsour.2017.04.014     URL    
[32]
Yang L Y , Wang Z J , Feng Y C , Tan R , Zuo Y X , Gao R T , Zhao Y , Han L , Wang Z Q , Pan F . Advanced Energy Materials , 2017, 7( 22): 1701437.

doi: 10.1002/aenm.201701437     URL    
[33]
Bae J, Li Y T, Zhao F, Zhou X Y, Ding Y, Yu G H. Energy Storage Materials , 2018, 15: 46.

doi: 10.1016/j.ensm.2018.03.016     URL    
[34]
Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C. Journal of Energy Storage , 2019, 26: 100947.

doi: 10.1016/j.est.2019.100947     URL    
[35]
Ramakrishnan P, Kwak H, Cho Y H, Kim J H. ChemElectroChem , 2018, 5( 9), 1265.

doi: 10.1002/celc.v5.9     URL    
[36]
He Z J, Fan L Z. Rare Metal , 2018, 37( 6): 488.

doi: 10.1007/s12598-018-1017-y     URL    
[37]
Peng X , Huang K , Song S P , Wu F , Xiang Y , Zhang X K . ChemElectroChem , 2020, 7( 11): 2389.

doi: 10.1002/celc.v7.11     URL    
[38]
Zhang Y B, Chen R J, Wang S, Liu T, Xu B Q, Zhang X, Wang X Z, Shen Y, Lin Y H, Li M, Fan L Z, Li L L, Nan C W. Energy Storage Materials , 2020, 25: 145.

doi: 10.1016/j.ensm.2019.10.020     URL    
[39]
Huo H Y , Chen Y , Luo J , Yang X F , Guo X X , Sun X L . Advanced Energy Materials , 2019, 9( 17): 1804004.

doi: 10.1002/aenm.v9.17     URL    
[40]
Li R G, Guo S T, Yu L, Wang L B, Wu D B, Li Y Q, Hu X L. Advanced Materials Interfaces , 2019, 6: 1900200.

doi: 10.1002/admi.v6.10     URL    
[41]
Huang Z Y, Tong R A, Zhang J, Chen L H, Wang C A. Journal of Power Sources , 2020, 451: 227797.

doi: 10.1016/j.jpowsour.2020.227797     URL    
[42]
Zhang J, Zheng C, Lou J T, Xia Y, Liang C, Huang H, Gan Y P, Tao X Y, Zhang W K. Journal of Power Source , 2019, 412: 78.

doi: 10.1016/j.jpowsour.2018.11.036     URL    
[43]
Cha J H, Didwal P N, Kim J M, Chang D R, Park C J. Journal of Membrane Science , 2019, 575: 200.

doi: 10.1016/j.memsci.2019.01.025     URL    
[44]
Kim D H, Kim M Y, Yang S H, Ryu H M, Jung H Y, Ban H J, Park S J, Lim J S, Kim H S. Journal of Industrial and Engineering Chemistry , 2019, 71: 445.

doi: 10.1016/j.jiec.2018.12.001     URL    
[45]
Jiang T L , He P G , Wang G X , Shen Y , Nan C W , Fan L Z . Advanced Energy Materials , 2020, 10( 12): 1903376.

doi: 10.1002/aenm.v10.12     URL    
[46]
Zha W P, Chen F, Yang D J, Shen Q, Zhang L M. Journal of Power Sources , 2018, 397: 87.

doi: 10.1016/j.jpowsour.2018.07.005     URL    
[47]
Duan H , Fan M , Chen W P , Li J Y , Wang P F , Wang W P , Shi J L , Yin Y X , Wan L J , Guo Y G . Advanced Materials, 2019, 31( 12): 1807789.

doi: 10.1002/adma.v31.12     URL    
[48]
Liu M, Cheng Z, Ganapathy S, Wang C, Haverkate L A, Tulodziecki M, Unnikrishnan S, Wagemaker M. ACS Energy Letters , 2019, 4( 9): 2336.

doi: 10.1021/acsenergylett.9b01371     URL    
[49]
Chen R J, Qu W J, Guo X, Li L, Wu F. Materials Horizons , 2016, 3( 6): 487.

doi: 10.1039/C6MH00218H     URL    
[50]
Langer F, Bardenhagen I, Glenneberg J, Kun R. Solid State Ionics , 2016, 291: 8.

doi: 10.1016/j.ssi.2016.04.014     URL    
[51]
Liang B, Tang S Q, Jiang Q B, Chen C S, Chen X, Li S L, Yan X H. Electrochimica Acta , 2015, 169: 334.

doi: 10.1016/j.electacta.2015.04.039     URL    
[52]
Choi J H, Lee C H, Yu J H, Doh C H, Lee S M. Journal of Power Sources , 2015, 274: 458.

doi: 10.1016/j.jpowsour.2014.10.078     URL    
[53]
Xie H , Bao Y H , Cheng J , Wang C W , Hitz E M , Yang C P , Liang Z A , Zhou Y B , He S M , Li T , Hu L B . ACS Energy Letters , 2019, 4( 11): 2668.

doi: 10.1021/acsenergylett.9b01847     URL    
[54]
Yan C Y, Zhu P, Jia H, Du Z, Zhu J D, Orenstein R, Cheng H, Wu N Q, Dirican M, Zhang X W. Energy Storage Materials , 2020, 26: 228.
[55]
Lin Z Y, Guo X W, Wang Z C, Wang B Y, He S M, O’Dell L A, Huang J, Li H, Yu H J, Chen L Q. Nano Energy , 2020, 73: 104786.

doi: 10.1016/j.nanoen.2020.104786     URL    
[56]
Zaman W, Hortance N, Dixit M B, De Andrade V, Hatzell K B. Journal of the American Chemical Society , 2019, 7: 23914.
[57]
Zha W P, Xu Y H, Chen F, Shen Q, Zhang L M. Solid State Ionics , 2019, 330: 54.

doi: 10.1016/j.ssi.2018.12.008     URL    
[58]
Cheng J, Hou G M, Sun Q, Liang Z, Xu X Y, Guo J G, Dai L N, Li D P, Nie X K, Zeng Z, Si P C, Ci L J. Solid State Ionics , 2020, 345: 115156.

doi: 10.1016/j.ssi.2019.115156     URL    
[59]
Li Y, Ding, F, Xu Z B, Sang L, Ren L B, Ni W, Liu X J. Journal of Power Sources , 2018, 397: 95.

doi: 10.1016/j.jpowsour.2018.05.050     URL    
[60]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy , 2018, 46: 176.

doi: 10.1016/j.nanoen.2017.12.037     URL    
[61]
Gupta A , Sakamoto J . Electrochemical Society Interface , 2019, 28( 2): 63.

doi: 10.1149/2.F06192if     URL    
[62]
Borodin O, Smith G D, Bandyopadhyaya R, Redfern P, Curtiss L A. Modelling and Simulation in Materials Science and Engineering , 2004, 12( 3): S73.

doi: 10.1088/0965-0393/12/3/S02     URL    
[63]
Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. ACS Nano Letters , 2018, 18, 6: 3829.
[64]
Song S D, Qin X H, Ruan Y L, Li W J, Xu Y Q, Zhang D Q, Thokchom J. Journal of Power Sources , 2020, 461: 228146.

doi: 10.1016/j.jpowsour.2020.228146     URL    
[65]
Zewde B W, Admassie S, Zimmermann J, Isfort, C S, Scrosati B, Hassoun J. ChemSusChem , 2013, 6( 8): 1400.

doi: 10.1002/cssc.201300296     URL    
[66]
Xu Z, Yang T, Chu X, Su H, Wang Z X, Chen N J, Gu B N, Zhang H P, Deng W L, Zhang HT , Yang W Q. ACS Applied Materials & Interfaces , 2020, 12( 9): 10341.

doi: 10.1021/acsami.9b20128     URL    
[67]
Polu A R, Rhee H W. Journal of Industrial and Engineering Chemistry, 2016, 37: 347.

doi: 10.1016/j.jiec.2016.03.042     URL    
[68]
Masoud E M, El-Bellihi A A, Bayoumy W A, Mousa M A. Journal of Alloys and Compounds , 2013, 575: 223.

doi: 10.1016/j.jallcom.2013.04.054    
[69]
Dissanayake M A K L, Jayathilaka P A R D, Bokalawala R S P, Albinsson I, Mellander B E. Journal of Power Sources , 2003, 119/121: 409.

doi: 10.1016/S0378-7753(03)00262-3     URL    
[70]
Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson M A. Electrochimica Acta , 2001, 46( 16): 2457.

doi: 10.1016/S0013-4686(01)00458-3     URL    
[71]
Chen-Yang Y W, Chen H C, Lin F J, Liao C W, Chen T L. Solid State Ionics , 2003, 156: 383.

doi: 10.1016/S0167-2738(02)00683-5     URL    
[72]
Jayathilaka P A R D, Dissanayake M A K L, Albinsson I , Mellander B E . Electrochimica Acta , 2002, 47( 20): 3257.

doi: 10.1016/S0013-4686(02)00243-8     URL    
[73]
van Wuellen L, Koster T K J, Wiemhofer H D, Kaskhedikar N. Chemistry of Materials , 2008, 20( 24): 7399.

doi: 10.1021/cm801841j     URL    
[74]
van Wuellen L, Koster T K J. Solid State Ionics , 2009, 108( 2/3): 141.

doi: 10.1016/S0167-2738(98)00032-0     URL    
[75]
Wang Z X, Huang X J, Chen L Q. Electrochemical and Solid-State Letters , 2003, 6: E40.

doi: 10.1149/1.1615352     URL    
[76]
Liu W , Milcarek R J , Falkenstein-Smith R L , Ahn J . Journal of Electrochemical Energy Conversion and Storage , 2016, 13( 2): UNSP 021008.
[77]
Xu H H, Chien P H, Shi J J, Li Y T, Wu N, Liu Y Y, Hu Y Y, Goodenough J B. Proceedings of the National Academy of Sciences of the United States of America , 2019, 116( 38): 18815.
[78]
Zheng J , Wang P B , Liu H Y , Hu Y Y . ACS Applied Energy Materials , 2019, 2( 2): 1452.

doi: 10.1021/acsaem.8b02008     URL    
[79]
Romero M, Faccio R, Vazquez S, Mombru A W. Materials Letters , 2016, 172: 1.

doi: 10.1016/j.matlet.2016.02.128     URL    
[80]
Sun J Q, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. Chemcical Engineering Journal , 2019, 375: UNSP 121922.
[81]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy , 2016, 28: 447.

doi: 10.1016/j.nanoen.2016.09.002     URL    
[82]
Bae J, Li Y T, Zhang J, Zhou X Y, Zhao F, Shi Y, Goodenough J B, Yu G H. Angewandte Chemie International Edition , 2018, 57( 8): 2096.
[83]
Liu Q, Geng Z, Han C P, Fu Y Z, Li S, He Y B, Kang F Y, Li B H. Journal of Power Sources , 2018, 389: 120.

doi: 10.1016/j.jpowsour.2018.04.019     URL    
[84]
Li Z , Huang H M , Zhu J K , Wu J F , Yang H , Wei L , Guo X . ACS Applied Materials & Interfaces , 2019, 11( 1): 784.

doi: 10.1021/acsami.8b17279     URL    
[85]
Liang C C. Journal of the Electrochemical Society , 1973, 120( 10): 1289.

doi: 10.1149/1.2403248     URL    
[86]
Chen C, Guo X X. Acta Chimica Slovenica , 2016, 63: 489.
[87]
Bhattacharyya A J, Maier J. Advanced Materials , 2004, 16: 811.

doi: 10.1002/(ISSN)1521-4095     URL    
[88]
Li Z, Xie H X, Zhang X Y, Guo X. Journal of Materials Chemistry A , 2020, 8: 3892.

doi: 10.1039/C9TA09969G     URL    
[89]
Gao J, Shao Q J, Chen J. Journal of Energy Chemistry , 2020, 46: 237.

doi: 10.1016/j.jechem.2019.11.012     URL    
[90]
Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y. Nature Energy , 2017, 2: 17035.

doi: 10.1038/nenergy.2017.35     URL    
[91]
Zheng J , Tang M X , Hu Y Y . Angewandte Chemie International Edition , 2016, 128( 40): 12726.
[92]
Kato M S, Hiraoka O J, Seki S R O. Journal of the Electrochemical Society , 2020, 167: 070559.

doi: 10.1149/1945-7111/ab8478     URL    
[93]
Zhou Q , Ma J , Dong S M , Li X F , Cui G L . Advanced Materials , 2019, 31( 50): 1902029.

doi: 10.1002/adma.v31.50     URL    
[94]
Liang B, Tang S Q, Jiang Q B, Chen C S, Chen X, Li S L, Yan X H. Electrochimica Acta , 2015, 169: 334.

doi: 10.1016/j.electacta.2015.04.039     URL    
[95]
Li X L, Yang L, Shao D S, Luo K L, Liu L, Wu Z Y, Luo Z G, Wang X Y. Journal of Applied Polymer Science , 2020, 137( 24): 48810.

doi: 10.1002/app.v137.24     URL    
[96]
Hua S, Jing M X, Han C, Yang H, Chen H, Chen F, Chen L L, Ju B W, Tu F Y, Shen X Q, Qin S B. International Journal of Energy Research , 2019, 43( 13): 7296.
[97]
Park C H, Kim D W, Prakash J, Sun Y K. Solid State Ionics , 2003, 159: 111.

doi: 10.1016/S0167-2738(03)00025-0     URL    
[98]
Cheng S H S, He K Q, Liu Y, Zha J W, Kamruzzaman M, Ma R L W, Dang Z M, Li R K Y, Chung C Y. Electrochimica Acta , 2017, 253: 430.

doi: 10.1016/j.electacta.2017.08.162     URL    
[99]
Zhang B H, Liu Y L, Liu J, Sun L Q, Cong L N, Fu F, Mauger A, Julien C M, Xie H M, Pan X M. Journal of Chemistry , 2021, 52: 318.
[100]
Zhang X, Liu T, Zhang S F, Huang X, Xu B Q, Lin Y H, Xu B, Li L L, Nan C W, Shen Y. Journal of the American Chemical Society , 2017, 139( 39): 13779.

doi: 10.1021/jacs.7b06364     URL    
[101]
Zhao Y, Yan J H, Cai W P, Lai Y M, Song J, Yu J Y, Ding B. Energy Storage Materials , 2019, 23: 306.

doi: 10.1016/j.ensm.2019.04.043     URL    
[102]
Callegari D, Bonizzoni S, Berbenni V, Quartarone E, Mustarelli P. Advanced Materials , 2020, 32( 14): 1907375.

doi: 10.1002/adma.v32.14     URL    
[103]
Huo H Y, Li X N, Sun Y P, Lin X T, Doyle-Davis K, Liang J W, Gao X J, Li R Y, Huang H, Guo X X, Sun X L. ACS Energy Letters , 2020, 5: 252.

doi: 10.1021/acsenergylett.9b02401     URL    
[104]
Ruan Y D, Lu Y, Huang X, Su J M, Sun C Z, Jin J, Wen Z Y. Journal of Materials Chemistry A , 2019, 7( 24): 14565.

doi: 10.1039/C9TA01911A     URL    
[105]
Yang H, Bright J, Chen B H, Zheng P, Gao X F, Liu B T, Kasani S J, Zhang X W, Wu N Q. Journal of Materials Chemistry A , 2020, 8( 15): 7261.

doi: 10.1039/C9TA12495K     URL    
[106]
Huang Z Y , Pang W Y , Liang P , Jin Z H , Grundish N , Li Y T , Wang C A . Journal of Materials Chemistry A , 2019, 7( 27): 16425.

doi: 10.1039/C9TA03395E     URL    
[107]
Cai D, Wang D H, Chen Y J, Zhang S Z, Wang X L, Xia X H, Tu J P. Chemical Engineering Journal , 2020, 394: 124993.

doi: 10.1016/j.cej.2020.124993     URL    
[108]
Zhai H W, Xu P Y, Ning M Q, Cheng Q, Mandal J, Yang Y. ACS Nano Letters , 2017, 17( 5): 3187.
[109]
Wang X, Zhai H W, Qie B Y, Cheng Q, Li A J, Borovilas J, Xu B Q, Shi C M, Jin T W, Liao X B, Li Y B, He X D, Du S Y, Fu Y K, Dontigny M, Zaghib K, Yang Y. Nano Energy , 2019, 60: 205.

doi: 10.1016/j.nanoen.2019.03.051     URL    
[110]
Kim H W, Han J, Lim Y J, Choi Y, Lee E, Kim Y. Advanced Functional Materials , 2020, 2002008.
[111]
Al-Masri D, Yunis R, Zhu HJ, Jin L Y, Bruce P, Hollenkamp A F, Pringle J M. Journal of Materials Chemistry A , 2019, 7( 44): 25389.

doi: 10.1039/C9TA11175A     URL    
[112]
Yi C J, Liu W Y, Li L P, Dong H Y, Liu J P. Functional Materials Letters , 2019, 12( 6): 1930006.

doi: 10.1142/S1793604719300068     URL    
[113]
Zhao Y B, Bai Y, Bai Y P, An M Z, Chen G R, Li W D, Li C, Zhou Y F. Journal of Power Sources , 2018, 407: 23.

doi: 10.1016/j.jpowsour.2018.10.045     URL    
[114]
Chen L, Fan L Z. Energy Storage Materials , 2018, 15: 37.

doi: 10.1016/j.ensm.2018.03.015     URL    
[1] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[2] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[3] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[4] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[5] 张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 钠基固体电解质及其在能源上的应用[J]. 化学进展, 2019, 31(1): 210-222.
[6] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[7] 高鹏,韩家军,朱永明,张翠芬,李宁. 金属锂二次电池锂负极改性[J]. 化学进展, 2009, 21(0708): 1678-1686.
[8] 崔孟忠,李竹云,张洁,冯圣玉. 硅氧烷基聚合物电解质*[J]. 化学进展, 2008, 20(12): 1987-1997.
[9] 王莉 何向明 蒲薇华 姜长印 万春荣 . 金属锂二次电池研究进展[J]. 化学进展, 2006, 18(05): 641-647.
[10] 凌志军,何向明,李建军,姜长印,万春荣. 锂离子聚合物常温固体电解质的研究进展[J]. 化学进展, 2006, 18(04): 459-466.
[11] 王庆伟,谢德民. 凝胶电解质的研究进展[J]. 化学进展, 2002, 14(03): 167-.
阅读次数
全文


摘要

高陶瓷含量复合固态电解质