English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 564-576 DOI: 10.7536/PC151123 前一篇   后一篇

• 综述与评论 •

金属配合物催化氢解脱卤研究

邓云盼1, 杨波1*, 余刚2, 卓琼芳3, 邓述波2, 张鸿1   

  1. 1. 深圳大学化学与环境工程学院 深圳 518060;
    2. 清华大学环境学院持久性有机物研究中心 北京 100084;
    3. 环保部华南环境科学研究所 广州 510665
  • 收稿日期:2015-11-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 杨波 E-mail:boyang@szu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21547011, 21177089, 11275130, 21307036)和国家高技术研究发展计划(863)项目(No. 2013AA06A305)资助

Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes

Deng Yunpan1, Yang Bo1*, Yu Gang2, Zhuo Qiongfang3, Deng Shubo2, Zhang Hong1   

  1. 1. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China;
    2. POPs Research Center, School of Environment, Tsinghua University, Beijing 100084, China;
    3. South China Institute of Environmental Sciences. MEP, Guangzhou 510655, China
  • Received:2015-11-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21547011, 21177089, 11275130, 21307036)and the National High-Tech Research and Development Program of China(863)(No. 2013AA06A305).
卤代有机物是环境领域的主要污染物类型之一.氢解脱卤是实现卤代有机物降解的有效途径,而探索不同催化氢解脱卤方法已成为该领域持续的研究热点.其中,金属配位化合物因其特殊的电子效应及空间效应可有效进行氢解脱卤,从而成为近年来报道的新型催化脱卤方法.基于此,本文总结了各种类型金属配合物进行氟、氯及溴代有机物催化脱卤过程的反应类型及过程机理,指出了配合物与卤代有机物之间电子转移状况、空间结构及配体亲卤性对脱卤反应起决定作用.另外,还探讨了中心离子、配体、卤代有机物类型和还原剂等影响因素对配位催化脱卤反应的作用机制,提出了当前配位催化脱卤研究存在的问题,并对今后该领域的实用性研究进行了展望.
Halogenated organic compounds (HOCs) are attributed as one of the major environmental contaminants. Hydrodehalogenation (HDH) has become an effective approach to degrade HOCs. Therefore, exploring various methods of catalytic HDH has persistently attracted many research concerns in this field. Among these methods, due to its special electronic effect and steric effect, metal complexes (MCs) have also presented the efficient catalytic dehalogenation performance. So the catalytic dehalogenation by MCs is reported as the novel HDH method in many recent studies. In this review, the reaction types and mechanisms are summarized for the catalytic dehalogenation processes of fluorinated, chlorinated, and brominated organic compounds using various MCs. It is indicated that the electron transfer conditions, spatial structure, and the affinity of ligand to halogen in HOCs play the major roles to dehalogenation reaction. Additionally, the influential factors including central metal ions, ligands, types of HOCs, reductants, etc. are discussed and analyzed for their effects on catalytic dehalogenation reaction. Finally, it is proposed about existing problems of the catalytic dehalogenation using MCs. Moreover, the future trends for the development of this method to HOCs degradation are prospected.

Contents
1 Introduction
2 Types and mechanisms of catalytic dehalogenation by MCs
2.1 Dechlorination and debromination
2.2 Defluorination
3 Influential factors
3.1 Effect of central ion and ligand in MCs
3.2 Effect of HOCs categories, substituted position of halogen atoms and functional groups
3.3 Effect of reductant
3.4 Effect of solvent
3.5 Effect of pH
3.6 Effect of catalyst support
4 Conclusion and outlook

中图分类号: 

()
[1] Shestakova M, Sillanpaa M. Chemosphere, 2013, 93(7): 1258.
[2] Petriello M C, Newsome B J, Dziubla T D, Hilt J Z, Bhattacharyya D, Hennig B. Sci. Total Environ., 2014,491/492: 11.
[3] Meng P P, Deng S B, Lu X Y, Du Z W, Wang B, Huang J, Wang Y J, Yu G, Xing B S. Environ. Sci. Technol., 2014, 48 (23): 13785.
[4] Kolomytseva M, Ferraroni M, Chernykh A, Golovleva L, Scozzafava A. Biochim. Biophys. Acta, 2014, 1844 (9): 1541.
[5] Yang B, Jiang C J, Yu G, Zhuo Q F, Deng S B, Wu J H, Zhang H. J. Hazard. Mater., 2015, 299: 417.
[6] Yang B, Deng S B, Yu G, Lu Y H, Zhang H, Xiao J Z, Chen G, Cheng X B, Shi L L. Chem. Eng. J., 2013, 219: 492.
[7] Matsukami H, Kose T, Watanabe M, Takigami H. Sci. TotalEnviron., 2014, 493: 672.
[8] 杨波(Yang B), 李影影(Li Y Y), 余刚(Yu G), 邓述波(Deng S B), 卓琼芳(Zhuo Q F), 张鸿(Zhang H). 化学进展(Progress in Chemistry), 2014, 7 (7):1265.
[9] Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189 (1/2): 76.
[10] 张云飞(ZhangY F), 杨波(Yang B), 张鸿(Zhang H), 余刚(Yu G), 邓述波(Deng S B), 刘剑洪(Liu J H). 化学进展(Progress in Chemistry), 2013, 25 (12): 2159.
[11] Zhang W, Li L, Li B, Lin K, Lu S, Fu R, Zhu J, Cui X. J. Environ. Eng., 2013, 139 (6): 803.
[12] Yang B, Yu G, Huang J. Environ. Sci. Technol., 2007, 41 (21): 7503.
[13] Whittlesey M K, Peris E. ACS Catal., 2014, 4 (9): 3152.
[14] Costentin C, Passard G, Robert M, Saveant J M. Chem. Sci., 2013, 4 (2): 819.
[15] Zámostná L, Ahrens M, Braun T. J. Fluorine Chem., 2013, 155: 132.
[16] McGivern W S, Derecskei Kovacs A, North S W, Francisco J S. J. Phys. Chem. A, 2000, 104 (2): 436.
[17] O'Loughlin E J, Burris D R, Delcomyn C A. Environ. Sci. Technol., 1999, 33 (7): 1145.
[18] Dugan T R, Goldberg J M, Brennessel W W, Holland P L. Organometallics, 2012, 31 (4): 1349.
[19] Ahrens M, Scholz G, Braun T, Kemnitz E. Angew. Chem. Int. Ed., 2013, 52 (20): 5328.
[20] Douvris C, Ozerov O V. Science, 2008, 321: 1188.
[21] Yow S, Gates S J, White A J, Crimmin M R. Angew. Chem., 2012, 124 (50): 12727.
[22] Akiyama T, Atobe K, Shibata M, Mori K. J. Fluorine Chem., 2013, 152: 81.
[23] Kuehnel M F, Lentz D, Braun T. Angew. Chem. Int. Ed. 2013, 52 (12): 3328.
[24] Saberov V S, Evans D A, Korotkikh N I, Cowley A H, Pekhtereva T M, Popov A F, Shvaika O P. Dalton Trans., 2014, 43 (48): 18117.
[25] 张晨(Zhang C). 山东大学硕士论文(Master Dissertation of Shandong University), 2008.
[26] Poonam, Kumari P, Ahmad S, Chauhan S M S. Tetrahedron Lett., 2011, 52 (52): 7083.
[27] Sun G, Zhang L, Zhang G, Fan Y, Wang Y, Lu G. J. Chin. Chem. Soc., 2013, 60 (11): 1365.
[28] Gan Y, Yu T, Zhou A, Liu Y, Yu K, Han L. Environ. Sci. Proc. Impacts, 2014, 16 (8): 1882.
[29] Tahara K, Mikuriya K, Masuko T, Kikuchi J, Hisaeda Y. J. Porphyrins Phthalocyanines, 2013, 17 (1/2): 135.
[30] Pratt D A, van der Donk W A. J. Am. Chem. Soc., 2005, 127 (1): 384.
[31] Liptak M D, Brunold T C. J. Am. Chem. Soc., 2006, 128 (28): 9144.
[32] Costentin C, Robert M, Saveant J M, Tard C. Acc. Chem. Res., 2014, 47 (1): 271.
[33] Follett A D, McNabb K A, Peterson A A, Scanlon J D, Cramer C J, McNeill K. Inorg. Chem., 2007, 46 (5): 1645.
[34] Rich A E, DeGreeff A D, McNeill K. Chem. Commun., 2002, 3 (3): 234.
[35] Argüello J E, Costentin C, Griveau S, Savéant J M. J. Am. Chem. Soc., 2005, 127 (14): 5049.
[36] Qian Y Y, Li B Z, Chan K S. Organometallics, 2013, 32 (6): 1567.
[37] Zhang C, Li X, Sun H. Inorg. Chim. Acta, 2011, 365 (1): 133.
[38] Kliegman S, McNeill K. Dalton Trans., 2008, 32 (32): 4191.
[39] Shimakoshi H, Sakumori E, Kaneko K, Hisaeda Y. Chem. Lett., 2009, 38 (5): 468.
[40] Shimakoshi H, Li L, Nishi M, Hisaeda Y. Chem. Commun., 2011, 47 (39): 10921.
[41] Dror I, Schlautman M A. Environ. Toxicol. Chem., 2004, 23 (2): 252.
[42] Zhang Y, Shen W, Ou Z, Zhu W, Fang Y, Kadish K M. Electroanal., 2013, 25 (6): 1513.
[43] Barnett B R, Evans A L, Roberts C C, Fritsch J M. Chemosphere, 2011, 82 (4): 592.
[44] Obare S O, Ito T, Meyer G J. Environ. Sci. Technol., 2005, 39 (16): 6266.
[45] Nelkenbaum E, Dror I, Berkowitz B. Chemosphere, 2009, 75 (1): 48.
[46] Shao J, Thomas A, Han B, Hansen C A. J. Porphyrins Phthalocyanines, 2010, 14 (2): 133.
[47] Izumi S, Shimakoshi H, Abe M, Hisaeda Y. Dalton Trans., 2010, 39 (13): 3302.
[48] Narayanam J M R, Tucker J W, Stephenson C R J. J. Am. Chem. Soc., 2009, 131: 8756.
[49] Tahara K, Hisaeda Y. Green Chem., 2011, 13 (3): 558.
[50] Maji T, Karmakar A, Reiser O. J. Org. Chem., 2011, 76 (2): 736.
[51] Tahara K, Shimakoshi H, Tanaka A, Hisaeda Y. B. Chem. Soc. Jpn., 2010, 83 (12): 1439.
[52] Shimakoshi H, Nakazato A, Tokunaga M, Katagiri K, Ariga K, Kikuchi J, Hisaeda Y. Dalton Trans., 2003, 11 (11): 2308.
[53] Logan M E, Oinen M E. Organometallics, 2006, 25 (4): 1052.
[54] Lázaro G, Polo V, Fernández-Alvarez F J, García-Orduña P, Lahoz F J, Iglesias M, Pérez-Torrente J J, Oro L A. Chem. Sus. Chem., 2015, 8: 495.
[55] Li J, Li X, Wang L, Hu Q, Sun H. Dalton Trans., 2014, 43 (18): 6660.
[56] Dror I, Schlautman M A. Chemosphere, 2004, 57 (10): 1505.
[57] Fritsch J M, McNeill K. Inorg. Chem., 2005, 44 (13): 4852.
[58] Rodriguez-Garrido B, Lu-Chau T A, Feijoo G, Macias F, Monterrroso M C. Environ. Sci. Technol., 2010, 44 (18): 7063.
[59] Cretnik S, Thoreson K A, Bernstein A, Ebert K, Buchner D, Laskov C, Haderlein S, Shouakar-Stash O, Kliegman S, McNeill K, Elsner M. Environ. Sci. Technol., 2013, 47 (13): 6855.
[60] Kliegman S, McNeill K. Environ. Sci. Technol., 2009, 43 (23): 8961.
[61] Amir A, Lee W. J. Hazard. Mater., 2012, 235: 359.
[62] Amir A, Lee W. Chem. Eng. J., 2011, 170 (2/3): 492.
[63] Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2013, 219: 311.
[64] Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2015, 273: 413.
[65] Kraft B M, Lachicotte R J, Jones W D. J. Am. Chem. Soc., 2001, 123 (44): 10973.
[66] Kuhnel M F, Lentz D. Angew. Chem., Int. Ed., 2010, 49 (16): 2933.
[67] Rieth R D, Brennessel W W, Jones W D. Eur. J. Inorg. Chem., 2007 (18): 2839.
[68] Maron L, Werkema E L, Perrin L, Eisenstein O, Andersen R A. J. Am. Chem. Soc., 2005, 127 (1): 279.
[69] Raza A L, Panetier J A, Teltewskoi M, Macgregor S A, Braun T. Organometallics, 2013, 32 (14): 3795.
[70] Aizenberg M, Milstein D. J. Am. Chem. Soc., 1995, 117 (33): 8674.
[71] Arévalo A, Tlahuext-Aca A, Flores-Alamo M, García J J. J. Am. Chem. Soc., 2014, 136 (12): 4634.
[72] Barrios-Francisco R, Benitez-Paez T, Flores-Alamo M, Arevalo A, Garcia J J. Chem. Asian J., 2011, 6 (3): 842.
[73] Slaney M E, Ferguson M J, McDonald R, Cowie M. Organometallics, 2012, 31 (4): 1384.
[74] Gianetti T L, Bergman R G, Arnold J. Chem. Sci., 2014, 5 (6): 2517.
[75] Fischer P, Goetz K, Eichhorn A, Radius U. Organometallics, 2012, 31 (4): 1374.
[76] Prikhod'ko S A, Adonin N Y, Parmon V N. Tetrahedron Lett., 2010, 51 (17): 2265.
[77] Kiplinger J L, G. R T. J. Am. Chem. Soc., 1996, 118 (7): 1805.
[78] Jäger-Fiedler U, Klahn M, Arndt P, Baumann W, Spannenberg A, Burlakov V V, Rosenthal U. J. Mol. Catal. A:Chem., 2007, 261 (2): 184.
[79] Lv H, Zhan J H, Cai Y B, Yu Y, Wang B, Zhang J L. J. Am. Chem. Soc., 2012, 134 (39): 16216.
[80] Lv H, Cai Y B, Zhang J L. Angew. Chem. Int. Ed., 2013, 52 (11): 3203.
[81] Macgregor S A, McKay D, Panetier J A, Whittlesey M K. Dalton Trans., 2013, 42 (20): 7386.
[82] Panetier J A, Macgregor S A, Whittlesey M K. Angew. Chem. Int. Ed., 2011, 50 (12): 2783.
[83] Reade S P, Mahon M F, Whittlesey M K. J. Am. Chem. Soc., 2009, 131 (5): 1847.
[84] Guard L M, Ledger A E W, Reade S P, Ellul C E, Mahon M F, Whittlesey M K. J. Organomet. Chem., 2011, 696 (3): 780.
[85] Schwartsburd L, Mahon M F, Poulten R C, Warren M R, Whittlesey M K. Organometallics, 2014, 33 (21): 6165.
[86] Ekkert O, Strudley S D A, Rozenfeld A, White A J P, Crimmin M R. Organometallics, 2014, 33 (24): 7027.
[87] Teltewskoi M, Panetier J A, Macgregor S A, Braun T. Angew. Chem., Int. Ed., 2010, 49 (23): 3947.
[88] Nova A, Reinhold M, Perutz R N, Macgregor S A, McGrady J E. Organometallics, 2010, 29 (7): 1824.
[89] Braun T, Noveski D, Ahijado M, Wehmeier F. Dalton Trans., 2007, 2007 (34): 3820.
[90] Xiao J, Wu J, Zhao W, Cao S. J. Fluorine. Chem., 2013, 146: 76.
[91] Zhao W, Wu J, Cao S. Adv. Synth. Catal., 2012, 354 (4): 574.
[92] Li J, Zheng T, Sun H, Li X. Dalton Trans., 2013, 42 (36): 13048.
[93] Chen Z, He C Y, Yin Z, Chen L, He Y, Zhang X. Angew. Chem. Int. Ed., 2013, 52 (22): 5813.
[94] Dror I, Schlautman M A. Environ. Toxicol. Chem., 2003, 22 (3): 525.
[95] Clot E, Eisenstein O, Jasim N, Macgregor S A, McGrady J E, Perutz R N. Acc. Chem. Res., 2011, 44 (5): 333.
[96] Caputo C B, Hounjet L J, Dobrovetsky R, Stephan D W. Sci., 2013, 341: 1374.
[97] Breyer D, Braun T, Klaering P. Organometallics, 2012, 31 (4): 1417.
[98] Isse A A, Gennaro A, Lin C Y, Hodgson J L, Coote M L, Guliashvili T. J. Am. Chem. Soc., 2011, 133: 6254.
[99] Sadowsky D, McNeill K, Cramer C J. Environ. Sci. Technol., 2013, 47 (24): 14194.
[100] Li J, Zheng T, Sun H, Xu W, Li X. Dalton Trans., 2013, 42 (16): 5740.
[101] Lv H, Cai Y B, Zhang J L. Angew. Chem. Int. Ed.,2013, 52 (11): 3203.
[102] Kim S, Park T, Lee W. J. Environ. Manage., 2015, 151: 378.
[103] Lesage S, Brown S, Millar K. Environ. Sci. Technol., 1998, 32 (15): 2264.
[104] Glod G, Brodmann U, Angst W, Holliger C, Schwarzenbach R P. Environ. Sci. Technol., 1997, 31 (11): 3154.
[105] Xu J, Shimakoshi H, Hisaeda Y. J. Organometallic Chem., 2015, 782: 89.
[106] Zhang W, Shimakoshi H, Houfuku N, Song X M, Hisaeda Y. Dalton Trans., 2014, 43: 13972.
[107] Sabater S, Mata J A, Peris E. Organometallics, 2015, 34 (7): 1186.
[1] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[2] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[3] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[4] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[5] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[6] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[7] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[8] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[9] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[10] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[11] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[12] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[13] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.
[14] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[15] 郑勇鹏, 许家喜. Thorpe-Ingold效应及其在有机成环反应中的应用[J]. 化学进展, 2014, 26(09): 1471-1491.
阅读次数
全文


摘要

金属配合物催化氢解脱卤研究