English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 254-262 DOI: 10.7536/PC200449 前一篇   后一篇

• 综述 •

两亲性Janus粒子的合成及其在Pickering乳液中的应用

张元霞1,2, 鲍艳1,3,*(), 马建中1,3,*()   

  1. 1 陕西科技大学轻工科学与工程学院 西安 710021
    2 轻化工程国家级实验教学示范中心(陕西科技大学) 西安 710021
    3 中国轻工业皮革清洁生产重点实验室 西安 710021
  • 收稿日期:2020-04-26 修回日期:2020-10-01 出版日期:2021-02-24 发布日期:2020-10-15
  • 通讯作者: 鲍艳, 马建中
  • 基金资助:
    国家自然科学基金(21878181); 国家自然科学基金(22078188); 陕西省重点研发计划(2018ZDXM-GY-118)

Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion

Yuanxia Zhang1,2, Yan Bao1,3,*(), Jianzhong Ma1,3,*()   

  1. 1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
    2 National Demonstration Center for Experimental Light Chemistry Engineering Education(Shaanxi University of Science & Technology), Xi’an 710021, China
    3 Key Laboratory of Leather Cleaner Production, China National Light Industry, Xi’an 710021, China
  • Received:2020-04-26 Revised:2020-10-01 Online:2021-02-24 Published:2020-10-15
  • Contact: Yan Bao, Jianzhong Ma
  • About author:
    * Corresponding author e-mail: (Yan Bao);
    (Jianzhong Ma)
  • Supported by:
    National Natural Science Foundation of China(21878181); National Natural Science Foundation of China(22078188); Key Research and Development Program of Shaanxi Province(2018ZDXM-GY-118)

Janus粒子由于在光、电、力、磁及表面亲/疏水性等方面表现出各向异性,因此在稳定乳液、生物医药及功能涂层等方面展现出广阔的应用价值。两亲性Janus粒子是指一侧具有亲水性、另一侧具有疏水性的不对称材料,由于同时具有表面活性剂的性质和固体颗粒的效应,在稳定Pickering乳液方面极具优势。基于此,本文对两亲性Janus粒子的制备方法进行了综述,并对比分析了其优缺点,同时总结了两亲性Janus粒子对Pickering乳液稳定性的影响,最后对其今后的发展进行了展望。

Janus particles are promising materials for stabilizing emulsion, self-assembly, biomedicine and functional coatings due to its anisotropic properties in mechanical, magnetic, optical, electrical properties, surface hydrophilicity and hydrophobicity. The amphiphilic Janus particles, in which one face possesses hydrophobicity and the other face possesses hydrophilicity, have received considerable attention in stabilizing Pickering emulsion owing to its property of surfactant and solid particle. In this paper, the fabrication methods of amphiphilic Janus particles are summarized, and their advantages and defects are compared firstly. Then the effects of amphiphilic Janus particles on the stability of Pickering emulsion are highlighted. Finally, the development of amphiphilic Janus particles in the future is prospected.

Contents

1 Introduction

2 Synthesis of amphiphilic Janus particles

2.1 Surface modification

2.2 In-situ generation

3 Research progress of amphiphilic Janus particles in Pickering emulsion

3.1 Hydrophilic-hydrophobic balance

3.2 Morphological

3.3 Size

4 Conclusion and outlook

()
图1 Janus粒子的类型(球形(a),圆柱形(b,c),圆盘形(d,e),不对称或雪人形(f), 对称哑铃型(g,k),相嵌型(h),反常型(i),囊泡或胶囊型(l))[30]
Fig. 1 Different types of Janus particles(spherical(a), cylindrical(b, c), disc-shaped(d, e), asymmetric or snowman(f), symmetric appearance(g, k), attached nodes(h), eccentric encapsulation(i), and vesicles or capsules(l))[30]
图2 半屏蔽法制备两亲性SiO2 Janus粒子的示意图
Fig. 2 The synthesis of SiO2 particles by protecting mask techniques
图3 (a)固-液界面处两亲性SiO2 Janus粒子的合成示意图;(b)用金纳米颗粒标记的Janus粒子的TEM图像,SiO2纳米颗粒一面被金纳米颗粒标记,另一面未被标记;(c)用金纳米颗粒标记的氨基化SiO2粒子的TEM图像,不同于Janus颗粒,SiO2粒子所有表面均被标记[49]
Fig.3 (a) Schematic synthesis of Janus silica nanoparticles at the interface of a Pickering emulsion.(b) TEM images of Janus nanoparticles labeled with Au nanoparticles; one side of the SiO2 nanoparticles is labeled with Au nanoparticles, whereas the other side is not labeled.(c) TEM image of amino-modified SiO2 nanoparticles labeled with Au nanoparticles. Different from the Janus nanoparticles, all of the sides were labeled[49]
图4 电化学沉积法制备Janus粒子:(a)双极电化学原理示意图;(b)双极电沉积前后玻璃碳颗粒的SEM图像(粒径为约20 μm) [50]
Fig.4 The synthesis of Janus particles by bipolar electrodeposition:(a) Principle of bipolar electrochemistry;(b) SEM images of glassy carbon particles before and after bipolar electrodeposition.(The particle diameter is around 20 μm) [50]
图5 (a)微流体装置合成两亲性Janus粒子的示意图;(b)两亲性Janus粒子的光学显微镜图像(亮相和暗相分别是M1和M2的聚合物,比例尺为100 μm) [55]
Fig.5 (a) Schematic diagram of synthesis of amphiphilic Janus particles by microfluidic device;(b) Optical microscope image of amphiphilic Janus particles(The bright and dark phase of polymer are M1 and M2, respectively, scale of 100 μm) [55]
图6 相分离法合成两亲性Janus聚合物粒子的示意图[59]
Fig. 6 The synthesis of the asymmetric Janus polymer particles via phase separation[59]
图7 相分离法制备两亲性PS/P2VP Janus颗粒的示意图[60]
Fig. 7 The preparation of amphiphilic PS/P2VP Janus particles by solvent evaporation-induced phase separation[60]
图8 通过硫醇-烯点击反应合成两亲性Janus粒子的示意图及相应的SEM照片[62]
Fig. 8 Schematic and corresponding SEM images depicting the synthesis of Janus particles and subsequent modification via thiol-yne click reactions[62]
表1 两亲性Janus粒子不同制备方法的优缺点
Table 1 Advantages and disadvantages of different preparation methods of amphiphilic Janus particles
图9 (A1~E1)Janus粒子的透射电镜照片(二氧化硅半球尺寸从A1到E1分别为0、50、90、110和200 nm);(A2-E2)相应Janus粒子稳定甲苯-水乳液的外观照片[80]
Fig. 9 (A1~E1) Transmission electron microscopy photos of Janus particles(The size of silica hemisphere from A1 to E1 are 0, 50, 90, 110 and 200 nm);(A2~E2) The corresponding photos of toluene-water emulsion stabilized by Janus particles[80]
图10 (a)不同形状Janus粒子的吸附行为:(A)球形Janus;(B)圆盘形Janus;(C)圆柱形Janus;(b)不同形状Janus粒子对水/甲苯界面张力的影响[74]
Fig. 10 (a)The most typical adsorption stages pointed out for(A) Janus spheres,(B) Janus discs, and(C) Janus cylinders;(b)The influence of the Janus particle shape on the interfacial tensionata water/toluene interface[74]
[1]
Hu J, Chen M, Fang X S, Wu L M. Chem. Soc. Rev., 2011, 40:5472.
[2]
Zhang J, Grzybowski B A, Granick S. Langmuir., 2017, 33:6964.
[3]
Liang F X, Liu B, Cao Z, Yang Z. Langmuir., 2017, 34:4123.

URL     pmid: 29169237
[4]
de Gennes P G. Rev. Mod. Phys., 1992, 64:645.
[5]
Baran Ł, BorÓwko M, R?ysko W. J. Phys. Chem. C, 2020, 124:17556.
[6]
Liu Y J, Dai R, Wei Q Y, Li W Z, Zhu G, Chi H, Guo Z M, Wang L, Cui C H, Xu J Q, Ma K. ACS Appl. Mater. Interfaces, 2019, 11:44582.

URL     pmid: 31682097
[7]
Lan Y, Choi J, Li H Y, Jia Y K, Huang R J, Stebe K J, Lee D. Ind. Eng. Chem. Res., 2019, 58:20961.
[8]
Kirillova A, Marschelke C, Synytska A. ACS Appl. Mater. Interfaces, 2019, 11:9643.
[9]
Liu S C, Pan J M, Dai X H, Qiu F X, Ma Y, He F, Pan G Q. J. Control. Release, 2017, 259:39.
[10]
Pardhy N P, Budhlall B M. Langmuir, 2010, 26:13130.
[11]
Zhang Y J, Kang L, Huang H J, Deng J P. ACS Appl. Mater. Interfaces, 2020, 12:6319.

URL     pmid: 31939279
[12]
Chi J J, Shao C M, Shang L R, Zhao Y J, Ye F F. Chem. Eng. J., 2020:128073.
[13]
Sun X T, Guo R, Wang D N, Wei Y Y, Yang C G, Xu Z R. J. Colloid Interface Sci., 2019, 553:631.
[14]
He Y, Savagatrup S, Zarzar L D, Swager T M. ACS Appl. Mater. Interfaces, 2017, 9:7804.
[15]
Chen S Q, He C, Li H J, Li P Y, He W D. Polym. Chem., 2016, 7:2476.
[16]
Tang X P, Hou Y, Meng Q B, Zhang G L, Liang F X, Song X M. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 570:191.
[17]
Fedeli E, Lancelot A, Serrano J L, Calvo P, Sierra T. New J. Chem., 2015, 39:1960.
[18]
Yang T, Wei L J, Jing L Y, Liang J F, Zhang X M, Tang M, Monteiro M J, Chen Y I, Wang Y, Gu S, Zhao D Y, Yang H Q, Liu J, Lu G Q M. Angew. Chem. Int. Ed., 2017, 56:8459.
[19]
Söz Ç K, Trosien S, Biesalski M. ACS Mater. Lett., 2020, 2:336.
[20]
Yoon J, Lee K J, Lahann J. J. Mater. Chem., 2011, 21:8502.
[21]
Wurm F, Kilbinger A. Angew. Chem. Int. Ed., 2009, 48:8412.
[22]
Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S. Adv. Mater., 2010, 22:1060.
[23]
Si Y S, Chen M, Wu L M. Chem. Soc. Rev., 2016, 45:690.
[24]
Zhao R T, Yu X T, Sun D Y, Huang L Y, Liang F X, Liu Z P. ACS Appl. Nano Mater., 2019, 2:2127.
[25]
Sikwal D R, Kalhapure R S, Govender T. Eur. J. Pharm. Sci., 2017, 97:113.

URL     pmid: 27864064
[26]
Pawar A B, Kretzschmar I. Macromol. Rapid Commun., 2010, 31:150.
[27]
Du J Z, O’Reilly R K. Chem. Soc. Rev., 2011, 40:2402.
[28]
Duguet E, DÉsert A, Perro A, Ravaine S. Chem. Soc. Rev., 2011, 40:941.
[29]
Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Chem. Soc. Rev., 2012, 41:4356.
[30]
Walther A, Müller A H E. Chem. Rev., 2013, 113:5194.
[31]
Zhang S, Deng Q C, Shangguan H J, Zheng C, Shi J, Huang F H, Tang B. ACS Appl. Mater. Interfaces, 2020, 12:12227.
[32]
Wilms D, Schröer F, Paul T J, Schmidt S. Langmuir, 2020, 36:12555.

URL     pmid: 32975417
[33]
Xue D, Meng Q B, Song X M. ACS Appl. Mater. Interfaces, 2019, 11:10967.

doi: 10.1021/acsami.8b21012     URL     pmid: 30793582
[34]
Chen H, Fu W X, Li Z B. Langmuir, 2020, 36:273.
[35]
Anjali T G, Basavaraj M G. Langmuir, 2019, 35:3.

URL     pmid: 29986588
[36]
Casagrande C, Veyssie M. C. R. Acad. Sci., 1988, 306,1423.
[37]
Casagrande C, Fabre P, Raphaël E, VeyssiÉ M. Europhys. Lett., 1989, 9:251.
[38]
Panwar K, Jassal M, Agrawal A K. Particuology, 2017, 33:50.
[39]
Wu H, Yi W Y, Chen Z, Wang H T, Du Q G. Carbon, 2015, 93:473.
[40]
Berger S, Synytska A, Ionov L, Eichhorn K J, Stamm M. Macromolecules, 2008, 41:9669.
[41]
Yang L L, Wang T D, Yang X, Jiang G C, Luckham P F, Xu J P, Li X L, Ni X X. Ind. Eng. Chem. Res., 2019, 58:9795.
[42]
Chen W Z, Qu Y J, Yao L M, Hou X H, Shi X Q, Pan H. J. Mater. Chem. A, 2018, 6:8021.
[43]
Ma A Y, Wang G L, Yang Z L, Bai L J, Chen H, Wang W X, Yang H W, Wei D L, Yang L X. Chem. Eng. J., 2020, 385:123962.
[44]
Hong L, Jiang S, Granick S. Langmuir, 2006, 22:9495.

doi: 10.1021/la062716z     URL     pmid: 17073470
[45]
Jiang S, Schultz M J, Chen Q, Moore J S, Granick S. Langmuir, 2008, 24:10073.
[46]
Zhang J, Jin J, Zhao H Y. Langmuir, 2009, 25:6431.
[47]
Tan J S J, Wong S L Y, Chen Z. Adv. Mater. Interfaces, 2020, 7:1901961.
[48]
Kadam R, Zilli M, Maas M, Rezwan K. Part. Part. Syst. Charact., 2018, 35:1700332.
[49]
Han B, Xia W D, Liu K N, Tian F C, Chen Y, Wang X Y, Liang F X, Yang Z Z. ACS Appl. Mater. Interfaces, 2018, 10:8519.
[50]
Loget G, Roche J, Kuhn A. Adv. Mater., 2012, 24:5111.

URL     pmid: 22806760
[51]
Loget G, Roche J, Gianessi E, Bouffier L, Kuhn A. J. Am. Chem. Soc., 2012, 134:20033.
[52]
Haney B, Werner J G, Weitz D A, Ramakrishnan S. ACS Appl. Mater. Interfaces, 2020, 12:33439.
[53]
Ge X H, Geng Y H, Chen J, Xu J H. Chem Phys Chem., 2018, 19:2009.

URL     pmid: 28771977
[54]
Zhang S B, Ge X H, Geng Y H, Luo G S, Chen J, Xu J H. Chem. Eng. Sci., 2017, 172:100.
[55]
Nisisako T, Torii T, Takahashi T, Takizawa Y. Adv. Mater., 2006, 18:1152.
[56]
Cui Y W, Wang Y, Wu J, He X K, Xuan S H, Gong X L. RSC Adv., 2019, 9:17959.
[57]
Ekanem E E, Zhang Z L, Vladisavljevi? G T. Langmuir, 2017, 33:8476.
[58]
Xu K, Ge X H, Huang J P, Dang Z X, Xu J H, Luo G S. RSC Adv., 2015, 5:46981.
[59]
Wang Y H, Zhang C L, Tang C, Li J, Shen K, Liu J G, Qu X Z, Li J L, Wang Q, Yang Z Z. Macromolecules, 2011, 44:3787.
[60]
Ku K H, Lee Y J, Yi G R, Jang S G, Schmidt B V K J, Liao K, Klinger D, Hawker C J, Kim B J. Macromolecules, 2017, 50:9276.
[61]
Tu F Q, Lee D. J. Am. Chem. Soc., 2014, 136:9999.

URL     pmid: 24791976
[62]
Bradley L C, Stebe K J, Lee D. J. Am. Chem. Soc., 2016, 138:11437.

URL     pmid: 27548642
[63]
Wu J Y, Gao C. Macromolecules, 2010, 43:7139.
[64]
Zhao H, Liang F X, Qu X Z, Wang Q, Yang Z Z. Macromolecules, 2015, 48:700.
[65]
Zhang J, Wang X J, Wu D X, Liu L, Zhao H Y. Chem. Mater., 2009, 21:4012.
[66]
Takahara Y K, Ikeda S, Ishino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsumura M, Ohtani B. J. Am. Chem. Soc., 2005, 127:6271.

URL     pmid: 15853333
[67]
Hong L, Cacciuto A, Luijten E, Granick S. Nano Lett., 2006, 6:2510.
[68]
Xie S T, Chen S, Zhu Q F, Li X, Wang D, Shen S T, Jin M L, Zhou G F, Zhu Y G, Shui L L. ACS Appl. Mater. Interfaces, 2020, 12:26374.
[69]
Binks B P, Fletcher P D I. Langmuir, 2001, 17:4708.
[70]
Glaser N, Adams D J, Böker A, Krausch G. Langmuir, 2006, 22:5227.

URL     pmid: 16732643
[71]
Zahn N, Kickelbick G. Colloids Surfaces A: Physicochem. Eng. Aspects, 2014, 461:142.
[72]
Aveyard R. Soft Matter, 2012, 8:5233.
[73]
Kumar A, Park B J, Tu F Q, Lee D. Soft Matter, 2013, 9:6604.
[74]
Ruhland T M, Gröschel A H, Ballard N, Skelhon T S, Walther A, Müller A H E, Bon S A F. Langmuir, 2013, 29:1388.
[75]
Ge L L, Shao W Q, Lu S H, Guo R. Soft Matter, 2014, 10:4498.

URL     pmid: 24806329
[76]
Ge L L, Lu S H, Guo R. J. Colloid Interface Sci., 2014, 423:108.

doi: 10.1016/j.jcis.2014.02.023     URL     pmid: 24703675
[77]
Ge L L, Li X, Friberg S E, Guo R. Colloid Polym. Sci., 2016, 294:1815.
[78]
Wei D, Ge L L, Lu S H, Li J J, Guo R. Langmuir, 2017, 33:5819.
[79]
Björkegren S, Nordstierna L, Törncrona A, Palmqvist A. J. Colloid Interface Sci., 2017, 487:250.
[80]
Passas-Lagos E, Schüth F. Langmuir, 2015, 31:7749.
[81]
Park B J, Choi C H, Kang S M, Tettey K E, Lee C S, Lee D. Langmuir, 2013, 29:1841.

doi: 10.1021/la304829s     URL     pmid: 23330850
[82]
Hirose Y, Komura S, Nonomura Y. J. Chem. Phys., 2007, 127:054707.

URL     pmid: 17688357
[83]
Ruhland T M, Gröschel A H, Walther A, Müller A H E. Langmuir, 2011, 27:9807.
[84]
Rezvantalab H, Shojaei-Zadeh S. Langmuir, 2013, 29:14962.

URL     pmid: 24205863
[85]
Pei X P, Zhai K K, Liang X C, Deng Y K, Tan Y, Wang P X, Xu K. Langmuir, 2017, 33:3787.

URL     pmid: 28343397
[86]
Qi F, Wu J, Sun G Q, Nan F F, Ngai T, Ma G H. J. Mater. Chem. B, 2014, 2:7605.
[87]
Haney B, Chen D, Cai L H, Weitz D, Ramakrishnan S. Langmuir, 2019, 35:4693.
[88]
Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E. J. Am. Chem. Soc., 2006, 128:9408.
[1] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[2] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[3] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[4] 田诗伟, 毛国梁, 张珈瑜, 历娜, 姜梦圆, 吴韦. 开关型Pickering乳液体系[J]. 化学进展, 2020, 32(4): 434-453.
[5] 周婉蓉, 孙巍*, 杨平辉. Janus粒子的制备及功能化应用[J]. 化学进展, 2018, 30(11): 1601-1614.
[6] 郭爽, 陈志强, 任笑菲, 张永民*, 刘雪锋*. CO2响应型乳液体系[J]. 化学进展, 2017, 29(7): 695-705.
[7] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[8] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[9] 杨平辉, 孙巍, 胡思, 陈忠仁. 纳米粒子的界面自组装[J]. 化学进展, 2014, 26(07): 1107-1119.
[10] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[11] 罗伟昂, 蒋斌杰, 程玲, 许一婷, 陈旭东, 戴李宗. 荧光探针技术在聚合物自组装研究中的应用[J]. 化学进展, 2013, 25(10): 1713-1725.
[12] 程传杰, 申亮, 付全磊, 龚珊珊. 活性/可控自由基无皂乳液聚合[J]. 化学进展, 2011, 23(4): 791-799.
[13] 易成林, 杨逸群, 江金强, 刘晓亚, 江明. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(01): 65-79.
[14] 丁敏 郭丽华 张玲 伍青. 荧光技术在两亲性聚合物研究中的应用*[J]. 化学进展, 2010, 22(0203): 458-464.
[15] 杨飞,王君,蓝强,孙德军,李传宪. Pickering乳状液的研究进展*[J]. 化学进展, 2009, 21(0708): 1418-1426.