English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 810-819 DOI: 10.7536/PC131010 前一篇   后一篇

• 综述与评论 •

嵌段共聚物溶液自组装制备纳米管状聚集体

王璐璐1,2, 黄海瑛*1, 何天白*1   

  1. 1. 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2013-10-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 黄海瑛,e-mail:hyhuang@ciac.ac.cn;何天白,e-mail:tbhe@ciac.ac.cn E-mail:hyhuang@ciac.ac.cn;tbhe@ciac.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21104079,21074135,21274148)资助

Block Copolymer Nanotubular Aggregates Prepared via Direct Self-Assembly in Solution

Wang Lulu1,2, Huang Haiying*1, He Tianbai*1   

  1. 1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-10-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21104079, 21074135, 21274148)

作为一种新型材料,具有独特一维空心结构的纳米管受到了越来越多的关注。与研究较为广泛的碳纳米管和两亲性小分子纳米管相比,聚合物纳米管在尺寸范围、内外表面功能化及结构稳定性等方面具有优势。本文总结了嵌段共聚物在选择性溶剂中自组装形成纳米管状聚集体的最新研究进展。根据形成纳米管状结构的嵌段共聚物链段的性质,可将其划分为柔性-柔性嵌段共聚物、刚性-柔性嵌段共聚物,以及具备特殊结构的类嵌段共聚物三大类。针对每一类体系,重点归纳了管状结构的制备方法、结构表征和形成条件等研究现状,并概括总结了制备此类一维空心结构的理论依据。最后,对嵌段共聚物纳米管潜在的应用价值和今后可能的发展方向进行了展望。

As a kind of novel material, nanotubes with special one-dimensional hollow structure have attracted more and more attention and investigation. Compared with widely studied carbon nanotubes or small amphiphilic molecular nanotubes, block copolymer nanotubes show advantages in dimension scales, functionalization of both inner and outer spaces and structure stability. Recent progress in preparation of nanotubular aggregates via direct self-assembly of block copolymer in selective solvent is reviewed in this paper. According to properties of blocks, block copolymers that can form nanotubes are divided into three categories, including coil-coil block copolymers, rod-coil block copolymers, and pseudo-block copolymers with specific structures. For each category, the preparation procedures, structure characterizations and formation conditions of the nanotubes are introduced. Moreover, mechanisms and regularities of such hollow one-dimensional structure formation are discussed as well. It is proposed that nanotube formation required highly ordered molecular packing and anisotropic intermolecular interactions; thus rod-coil block copolymers are more likely to form polymer nanotube than coil-coil blockcopolymers. Based on these studies, potential applications and possible trends for future research are briefly described finally.

Contents
1 Introduction
2 Preparation methods and structure characterizations of self-assembled nanotubes
2.1 Direct dissolution
2.2 Selective solvent addition
2.3 Film rehydration
2.4 Solution temperature control
2.5 Characterization of nanotubular structures
3 Classification of nanotube-forming block copolymers
3.1 Coil-coil block copolymers
3.2 Rod-coil block copolymers
3.3 Pseudo-block copolymers with specific structures
4 Conclusions and outlook

中图分类号: 

()

[1] Iijima S. Nature, 1991, 354 (6348): 56.
[2] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297 (5582): 787.
[3] Tominaga M, Fujita M. Bull. Chem. Soc. Jpn., 2007, 80 (8): 1473.
[4] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Langmuir, 1998, 14 (12): 3160.
[5] Muellner M, Yuan J, Weiss S, Walther A, Foertsch M, Drechsler M, Mueller A H E. J. Am. Chem. Soc., 2010, 132 (46): 16587.
[6] Hill J P, Jin W S, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304 (5676): 1481.
[7] Karlsson M, Sott K, Davidson M, Cans A S, Linderholm P, Chiu D, Orwar O. Proc. Natl. Acad. Sci. U.S.A., 2002, 99 (18): 11573.
[8] Couet J, Jeyaprakash J D, Samuel S, Kopyshev A, Santer S, Biesalski M. Angew. Chem. Int. Ed., 2005, 44 (21): 3297.
[9] Lo P K, Karam P, Aldaye F A, McLaughlin C K, Hamblin G D, Cosa G, Sleiman H F. Nat. Chem., 2010, 2 (4): 319.
[10] Lo P K, Altvater F, Sleiman H F. J. Am. Chem. Soc., 2010, 132 (30): 10212.
[11] Petzetakis N, Robin M P, Patterson J P, Kelley E G, Cotanda P, Bomans P H H, Sommerdijk N A J M, Dove A P, Epps T H, O'Reilly R K. ACS Nano, 2013, 7 (2): 1120.
[12] Wang C, Yin S, Chen S, Xu H, Wang Z, Zhang X. Angew. Chem. Int. Ed., 2008, 47 (47): 9049.
[13] Tang Y, Zhou L, Li J, Luo Q, Huang X, Wu P, Wang Y, Xu J, Shen J, Liu J. Angew. Chem. Int. Ed., 2010, 49 (23): 3920.
[14] Yager P, Schoen P E. Mol. Cryst. Liq. Cryst., 1984, 106 (3/4): 371.
[15] Yamada K, Ihara H, Ide T, Fukumoto T, Hirayama C. Chem. Lett., 1984, (10):1713.
[16] Nakashima N, Asakuma S, Kim J M, Kunitake T. Chem. Lett., 1984, (10):1709.
[17] Kameta N, Minamikawa H, Masuda M. Soft Matter, 2011, 7 (10):4539.
[18] Shimizu T, Masuda M, Minamikawa H. Chem. Rev., 2005, 105 (4):1401.
[19] Fu G D, Li G L, Neoh K G, Kang E T. Prog. Polym. Sci, 2011, 36 (1):127.
[20] Dror Y, Salalha W, Avrahami R, Zussman E, Yarin A L, Dersch R, Greiner A, Wendorff J H. Small, 2007, 3 (6):1064.
[21] Lallave M, Bedia J, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T, Otero J C, Marquez M, Barrero A, Loscertales I G. Adv. Mater., 2007, 19 (23):4292.
[22] Pulamagatta B, Yau M Y E, Gunkel I, Thurn-Albrecht T, Schroeter K, Pfefferkorn D, Kressler J, Steinhart M, Binder W H. Adv. Mater., 2011, 23 (6): 781.
[23] Lee K J, Min S H, Oh H, Jang J. Chem. Commun., 2011, 47 (33):9447.
[24] Reiner J E, Wells J M, Kishore R B, Pfefferkorn C, Helmerson K. Proc. Natl. Acad. Sci. U.S.A., 2006, 103 (5):1173.
[25] Jofre A, Hutchison J B, Kishore R, Locascio L E, Helmerson K. J. Phys. Chem. B, 2007, 111 (19):5162.
[26] Black C T, Murray C B, Sandstrom R L, Sun S H. Science, 2000, 290 (5494):1131.
[27] Zhang L F, Eisenberg A. Polym. Adv. Technol., 1998, 9 (10/11):677.
[28] Cameron N S, Corbierre M K, Eisenberg A. Can. J. Chem., 1999, 77 (8):1311.
[29] Mai Y, Eisenberg A. Chem. Soc. Rev, 2012, 41 (18):5969.
[30] 梅爱雄(Mei A X), 杨雍(Yang Y), 徐君庭(Xu J T), 杜滨阳(Du B Y). 化学进展(Progress in Chemistry), 2009, 21 (10), 2188.
[31] Huang Y F, Lin C W. Polymer, 2009, 50 (3):775.
[32] Lazzara T D, van de Ven T G M, Whitehead M A. Macromolecules, 2008, 41 (18):6747.
[33] Huang K, Rzayev J. J. Am. Chem. Soc., 2011, 133 (42):16726.
[34] Yan D Y, Zhou Y F, Hou J, Science, 2004, 303 (5654):65.
[35] Liu G J, Yan X H, Li Z, Zhou J Y, Duncan S. J. Am. Chem. Soc., 2003, 125 (46):14039.
[36] Yan X H, Liu G J, Li Z. J Am. Chem. Soc., 2004, 126 (32):10059.
[37] Koh K, Liu G, Willson C G. J Am Chem. Soc., 2006, 128 (49):15921.
[38] Shimizu T. Self-Assembled Nanomaterials Ⅱ: Nanotubes. Berlin Heidelberg: Springer-Verlag, 2008. 29.
[39] Stewart S, Liu G. Angew. Chem. Int. Ed., 2000, 39 (2):340.
[40] Ho R M, Chen C K, Chiang Y W, Ko B T, Lin C C. Adv. Mater., 2006, 18 (18):2355.
[41] Gao L C, Shi L Q, Zhang W Q, An Y L, Liu Z, Li G Y, Meng Q B. Macromolecules, 2005, 38 (11):4548.
[42] 江明(Jiang M), 艾森伯格(Eisenberg A), 刘国军(Liu G J), 张希(Zhang X). 大分子自组装(Macromolecular Self-Assembly). 北京:科学出版社(Beijing:Science Press), 2006. 304.
[43] 刘世勇(Liu S Y), 江明(Jiang M). 高等学校化学学报(Chem. J. Chinese Universities-Chinese), 2001, 22 (6): 1066.
[44] 于海洲(Yu H Z).中国科学院研究生院博士学位论文(Doctoral Dissertation of Graduate University of Chinese Academy of Science), 2009.
[45] Yu K, Eisenberg A. Macromolecules, 1998, 31 (11):3509.
[46] Grumelard J, Taubert A, Meier W. Chem. Commun., 2004, (13):1462.
[47] Thomas B N, Safinya C R, Plano R J, Clark N A. Science, 1995, 267 (5204):1635.
[48] LaRue I, Adam M, Pitsikalis M, Hadjichristidis N, Rubinstein M, Sheiko S S. Macromolecules, 2006, 39 (1):309.
[49] Bhargava P, Tu Y, Zheng J X, Xiong H, Quirk R P, Cheng S Z D. J. Am. Chem. Soc., 2007, 129 (5):1113.
[50] Kim S H, Nederberg F, Jakobs R, Tan J P K, Fukushima K, Nelson A, Meijer E W, Yang Y Y, Hedrick J L. Angew. Chem. Int. Ed., 2009, 48 (25):4508.
[51] Njikang G, Han D, Wang J, Liu G. Macromolecules, 2008, 41 (24):9727.
[52] Malardier-Jugroot C, van de Ven T G M, Cosgrove T, Richardson R M, Whitehead M A. Langmuir, 2005, 21 (22):10179.
[53] Yu K, Zhang L F, Eisenberg A. Langmuir, 1996, 12 (25):5980.
[54] Yu Y S, Zhang L F, Eisenberg A. Macromolecules, 1998, 31 (4):1144.
[55] Desbaumes L, Eisenberg A. Langmuir, 1999, 15 (1):36.
[56] Tian Z, Li H, Wang M, Zhang A, Feng Z G. J. Polym. Sci., Part A: Polym. Chem., 2008, 46 (3):1042.
[57] Jenekhe S A, Chen X L. Science, 1998, 279 (5358):1903.
[58] Raez J, Manners I, Winnik M A. J. Am. Chem. Soc., 2002, 124 (35):10381.
[59] Raez J, Barjovanu R, Massey J A, Winnik M A, Manners I. Angew. Chem. Int. Ed., 2000, 39 (21):3862.
[60] Raez J, Manners I, Winnik M A. Langmuir, 2002, 18 (19):7229.
[61] Wang X, Wang H, Frankowski D J, Lam P G, Welch P M, Winnik M A, Hartmann J, Manners I, Spontak R J. Adv. Mater., 2007, 19 (17):2279.
[62] Raez J, Tomba J P, Manners I, Winnik M A. J. Am. Chem. Soc., 2003, 125 (32):9546.
[63] Jia L, Levy D, Durand D, Imperor-Clerc M, Cao A, Li M H. Soft Matter, 2011, 7 (16):7395.
[64] Kuo S W, Lee H F, Huang C F, Huang C J, Chang F C. J. Polym. Sci., Part A: Polym. Chem., 2008, 46 (9):3108.
[65] Ueda M, Makino A, Imai T, Sugiyama J, Kimura S. J. Pept. Sci., 2011, 17 (2):94.
[66] Yan Q, Xin Y, Zhou R, Yin Y, Yuan J. Chem. Commun., 2011, 47 (34):9594.
[67] Han Y K, Zhang Z J, Wang Y L, Xia N, Liu B, Xiao Y, Jin L X, Zheng P, Wang W. J. Pept. Sci., 2011, 212 (1):81.
[68] Schappacher M, Deffieux A. Science, 2008, 319 (5869):1512.
[69] 翟中和(Zhai Z H), 王喜忠(Wang X Z), 丁明孝(Ding M X). 细胞生物学(Cell Biology). 北京:高等教育出版社(Beijing: Higher Education Press), 2000. 328.
[70] Gress A, Heilig A, Smarsly B M, Heydenreich M, Schlaad H. Macromolecules, 2009, 42 (12):4244.
[71] Chen Y. Macromolecules, 2012, 45 (6):2619.
[72] Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2 (4):249.
[73] Wang X S, Wang H, Coombs N, Winnik M A, Manners I. J. Am. Chem. Soc., 2005, 127 (25):8924.
[74] Xu P, Ji X, Yang H, Qi J, Zheng W, Abetz V, Jiang S, Shen J. Mater. Chem. Phys., 2010, 119 (1/2):249.

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[7] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[8] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[9] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[10] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[11] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[12] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[13] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[14] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[15] 王睿, 台国安, 伍增辉, 邵伟, 候闯, 郝金钱. 硼纳米结构的理论和实验研究[J]. 化学进展, 2019, 31(12): 1696-1711.