English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 417-422 DOI: 10.7536/PC190713 前一篇   后一篇

• •

基于壳聚糖二氧化碳智能材料

闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普*()   

  1. 兰州交通大学化学与生物工程学院 兰州 730070
  • 收稿日期:2019-07-15 修回日期:2019-10-21 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 何乃普
  • 作者简介:
    * 通信作者 Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21164003)

Carbon Dioxide Smart Materials Based on Chitosan

Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He*()   

  1. School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2019-07-15 Revised:2019-10-21 Online:2020-04-05 Published:2020-03-30
  • Contact: Naipu He
  • Supported by:
    the National Natural Science Foundation of China(21164003)

二氧化碳(CO2)捕获以及转化是控制大气中二氧化碳含量和有效利用的主要策略。CO2 响应型聚合物以含有胺基的烯类单体为主要原料,通过接枝聚合或与其他功能分子复合来改善其对CO2的响应以及捕获性能。其中,天然高分子(如多糖、蛋白质等)具有资源丰富、无毒、可降解和良好的生物相容性等优点,是制备环境友好高分子材料的最佳选择。同时,壳聚糖含有大量的伯胺,在制备基于胺基的具有CO2响应以及捕获性能的智能复合材料中具有潜在优势。本文首先介绍了CO2响应聚合物和壳聚糖的特点,进一步归纳了近年来基于壳聚糖的CO2响应高分子以及捕获材料的最新研究进展,并对这类复合材料的设计及其应用前景进行了展望。

It is a main strategy that carbon dioxide (CO2) in the atmosphere is effective utilized, and its concentration is balanced by capture and conversion of CO2. Generally, CO2 responsive polymers are prepared by alkene monomers containing amine groups. Their response and capture properties for CO2 are improved by grafting polymerization or combining with other functional molecules. Natural polymers including polysaccharide and protein are considered as excellent candidates to prepare environmentally friendly polymers because of their rich resources, non-toxicity, biodegradability and good biocompatibility. Additional, chitosan contains a large number of amino groups, so it is employed to prepare CO2 smart materials and exhibits specific advantages. In the current paper, firstly, CO2 responsive polymer and chitosan(CS) are introduced. Secondly, advance in CO2 responsive polymers and capture materials based on chitosan is reviewed. Finally, a prospect for smart materials based on chitosan in the future is provided.

Contents

1 Introduction

2 Carbon dioxide responsive polymers

3 Chitosan

4 Carbon dioxide responsive polymers based on chitosan

5 Capture materials based on chitosan for carbon dioxide

6 Conclusion and outlook

()
图1 二氧化碳响应官能团,依次为叔胺、脒、胍、咪唑、羧酸
Fig. 1 CO2-switchable functional groupsin turn: tertiary amine, amidine, guanidine, imidazole, and carboxylic acid
图2 脒和胺与CO2和水反应生成碳酸氢盐[9]
Fig. 2 Reaction of amidines and amines with CO2 and water to form bicarbonate salts[9]
图3 羧酸与CO2气体分子的可逆响应机理
Fig. 3 Reversible response mechanism of carboxylic acid to CO2 gas molecule
图4 伯胺与CO2气体分子的可逆共价结合机理
Fig. 4 Reversible covalent binding mechanism of primary amine to CO2 gas molecule
图5 甲壳素脱乙酰制备壳聚糖
Fig. 5 Preparation of chitosan by deacetylation of chitin
图6 CS-g-DMAEMA合成方法[27]
Fig. 6 Synthesis of CS-g-DMAEMA[27]
图7 CO2/N2 作用下 CS-g-DMAEMA 在质子态与非质子态之间的转变[27]
Fig. 7 Transition of CS-g-DMAEMA between protonated and deprotonated states by CO2/N2 [27]
图8 CNC凝胶的CO2开关可切换能力[29]
Fig. 8 The CO2-switchability of the CNC hydrogel[29]
图9 用于油水分离具有切换CNF-g-PDMAEMA气凝胶的制备示意图[30]
Fig. 9 Schematic illustration of the preparation of CNF-g-PDMAEMA aerogel for switchable oil-water separation[30]
图10 湿摆法捕获可逆CO2的示意图[40]
Fig. 10 Schematic illustration of reversible CO2 capture by humidity swing[40]
图11 壳聚糖-SiO2纳米粒子微观状态及其捕获性能[43]
Fig. 11 Microcosmic state and adsorption properties of chitosan-SiO2 nanoparticles[43]
[1]
Ackerman K V , Sundquist E T. Environ. Sci. Technol., 2008,42(15):5688. https://pubs.acs.org/doi/10.1021/es800221q

doi: 10.1021/es800221q     URL    
[2]
Haszeldine R S . Science, 2009,325(5948):1647.
[3]
Aziz B , Zhao G , Hedin N . Langmuir, 2011,27(7):3822.
[4]
Darabi A , Jessop P G , Cunningham M F. Chem. Soc. Rev., 2016,45(15):4391.
[5]
Stuart M A C , Huck W T S , Genzer J , Müller M , Ober C , Stamm M , Sukhorukov G B , Szleifer I , Tsukruk V V , Urban M , Winnik F , Zauscher S , Luzinov I , Minko S . Nat. Mater., 2010,9(2):101.
[6]
Dai S , Ravi P , Tam K C . Soft Matter, 2008,4(3):435. http://xlink.rsc.org/?DOI=b714741d

doi: 10.1039/b714741d     URL    
[7]
Lu H , Zhou Z , Jiang J , Huang Z .J Appl. Polym. Sci., 2015,132(7):41468.
[8]
许兵(Xu B) . 天津大学硕士毕业论文(Master’s Desertation of Tianjin University), 2015.
[9]
Fowler C I , Jessop P G , Cunningham M F . Macromolecules, 2012,45(7):2955.
[10]
Xu H , Rudkevich D M. . Chem-Eur. J., 2004,10(21):5432.
[11]
Jessop P G , Heldebrant D J , Li X , Eckert C A , Liotta C L . Nature, 2005,436(7054):1102.
[12]
Phan L , Brown H , White J , Hodgson A , Jessop P G. Green Chem., 2009,11(1):53.
[13]
Liu Y , Jessop P G , Cunningham M , Eckert C A , Liotta C L . Science, 2006,313(5789):958
[14]
Zhou Z , Lu H , Huang Z . J Disper. Sci. Tecnol., 2015,37(8):1200.
[15]
Guo Z , Feng Y , Wang Y , Wang J , Wu Y , Zhang Y . Chem. Commun, 2011,47(33):9348.
[16]
Yan Q , Zhao Y. Angew. Chem. Int. Ed., 2013,52(38):9948.
[17]
Shieh Y T , Hu F Z , Cheng C C. ACS Appl. Nano. Mater., 2018,1(1):384
[18]
Elgadir M A , Uddin M S , Ferdosh S , Adam A , Chowdhury A J K , Sarker M Z I. . J Food. Drug. Anal., 2015,23(4):619 https://linkinghub.elsevier.com/retrieve/pii/S1021949814001410

doi: 10.1016/j.jfda.2014.10.008     URL    
[19]
No H K , Meyers S P , Prinyawiwatkul W , Xu Z .J Food. Sci., 2007,72(5):R87.
[20]
Bawn C S H . Polymer, 1987,28(7):1234.
[21]
Hench L L . Biomaterials, 1998,19(16):1419. https://linkinghub.elsevier.com/retrieve/pii/S0142961298001331

doi: 10.1016/S0142-9612(98)00133-1     URL    
[22]
Kurita K. . Mar. Biotechnol, 2006,8(3):203. e5a0b5a2-c727-4805-a2e5-2da892660207 http://link.springer.com/10.1007/s10126-005-0097-5

doi: 10.1007/s10126-005-0097-5     URL    
[23]
Li Q , Dunn E T , Grandmaison E W , Goosen M F A. . J. Bioact. Compat. Polym., 1992,7(4):370.
[24]
Xie H , Zhang S , Li S . Green Chem, 2006,8(7):630.
[25]
Ren D , Xu S , Sun D , Wang Q , Xu Z . Colloid. Surface. A, 2018,555:507.
[26]
Shieh Y T , Lin Y T , Cheng C C. Carbohydr. Polym., 2017,170:281.
[27]
任冬寅(Ren D Y), 尚志新(Shang Z X), 王启宝(Wang Q B) . 日用化学工业(Household and Personal Care Chemical Industry), 2018,48(05):260.
[28]
He N , Cao Q , Wang L , Chen X , Li B , Liu Z. Macromol. Chem. Phys., 2018,219(23):1800319.
[29]
Oechsle A L , Lewis L , Hamad W Y , Hatzikiriakos S G , MacLachlan M . J. Chem. Mater., 2018,30(2):376.
[30]
Li Y , Zhu L , Grishkewich N , Tam K C , Yuan J , Mao Z , Sui X. ACS Appl. Mater. Inter., 2019,11(9):9367.
[31]
付新(Fu X) . 化学与生物工程(Chemistry and Bioengineering), 2011,28(10):11.
[32]
Ito A , Sato M , Anma T. Angew. Makromol. Chem., 1997,248(1):184.
[33]
Primo A , Forneli A , Corma A , García H . ChemSusChem., 2012,5(11):2207.
[34]
Yoshida H , Oelenschlaeger S , Minami Y , Terashima M . J. Chem. Eng. Jpn., 2002,35(1):32.
[35]
Huang C C , Shen S .J Taiwn Inst. Chem. Eng., 2013,44(1):89.
[36]
Fan X , Zhang L , Zhang G , Shu Z , Shi J . Carbon, 2013,61:423.
[37]
Alhwaige A A , Agag T , Ishida H , Qutubuddin S . RSC Adv, 2013,3(36):16011.
[38]
Alhwaige A A , Ishida H , Qutubuddin S. ACS Sustain. Chem. Eng., 2016,4(3):1286.
[39]
Fujiki J , Yogo K . Energy Fuels, 2014,28(10):6467.
[40]
Song J , Liu J , Zhao W , Chen Y , Xiao H , Shi X , Liu Y , Chen X. Ind. Eng. Chem. Res., 2018,57(14):4941. https://pubs.acs.org/doi/10.1021/acs.iecr.8b00064

doi: 10.1021/acs.iecr.8b00064     URL    
[41]
Sneddon G , Ganin A Y , Yiu H H P Energy Technol., 2015,3(3):190.
[42]
Pohako-Esko K , Bahlmann M , Schulz P S , Wasserscheid P. Ind. Eng. Chem. Res., 2016,55(25):7052.
[43]
Rafigh S M , Heydarinasab A. ACS Sustain. Chem. Eng., 2017,5(11):10379.
[1] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[2] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[3] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[4] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[5] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[6] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[7] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[8] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[9] 高鹏, 高彬彬, 高建强, 张锴, 杨勇平, 陈鸿伟. 壳聚糖及其复合物对水中汞离子的脱除[J]. 化学进展, 2016, 28(12): 1834-1846.
[10] 王奕寒, 脇坂港. 纳米纤维制备工艺进展及其对壳聚糖的适用性分析[J]. 化学进展, 2014, 26(11): 1821-1831.
[11] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[12] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[13] 孙璠, 徐民, 李克让, 张帅, 刘蒲*. 甲壳素和壳聚糖在离子液体中的溶解与改性[J]. 化学进展, 2013, 25(05): 832-837.
[14] 胡惠媛, 朱虹* . 壳聚糖及其衍生物对重金属离子的吸附[J]. 化学进展, 2012, 24(11): 2212-2223.
[15] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
阅读次数
全文


摘要

基于壳聚糖二氧化碳智能材料