English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 5-13 DOI: 10.7536/PC191218 前一篇   后一篇

• •

基于CRISPR的生物分析化学技术

李悦, 李景虹**()   

  1. 1. 清华大学化学系 生命有机磷化学及化学生物学教育部重点实验室 北京 100084
  • 收稿日期:2019-12-22 出版日期:2020-01-15 发布日期:2020-01-08
  • 通讯作者: 李景虹
  • 基金资助:
    国家自然科学基金项目资助(21621003)

CRISPR Bioanalytical Chemistry Technology

Yue Li, Jinghong Li**()   

  1. 1. Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology(Ministry of Education), Tsinghua University, Beijing 100084, China
  • Received:2019-12-22 Online:2020-01-15 Published:2020-01-08
  • Contact: Jinghong Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21621003)

CRISPR(Clustered regularly interspaced short palindromic repeats)技术是一种革命性的基因编辑和调控工具,问世之后迅速成为了生物医学领域的前沿热点,广泛用于基因功能研究和治疗。CRISPR具有优异的序列识别性质,核酸切割能力,并且易于编程设计改造,在生物分析化学领域展示出独特的魅力,在病毒检测、临床诊断和单细胞成像分析等方面都取得了突破性进展。目前基于CRISPR技术的检测方法种类繁多,本文综述了CRISPR-Cas分析检测方法的研究进展,并且展望了该技术的发展趋势。

CRISPR (Clustered regularly interspaced short palindromic repeats) technology is a revolutionary gene editing tool developed in recent years, which has quickly become a cutting-edge technology in the field of biology and medicine and widely used in gene function research and gene therapy. In addition to excellent gene editing capabilities, various new functions are also being continuously created with the efforts of scientists from different fields. CRISPR has excellent sequence recognition properties, nucleic acid cleavage ability, and is easy to program and design. Therefore, it exhibits unique charm in the field of bioanalytical chemistry, and has made breakthrough progress in virus detection, clinical diagnosis, and single cell imaging analysis. At present, there are many types of detection methods using CRISPR technology. Therefore, we summarize and classify the current research status of CRISPR analysis and detection methods, and look forward to its development trend.

()
图1 CRISPR-Cas核酸酶活性概述:(a)在gRNA引导下,Cas9蛋白的RuvC和HNH核酸酶结构域可以靶向剪切DNA双链。在Cas9基础上对核酸酶结构域进行突变,产生具有切口酶活性的Cas9 nickase HNH+和Cas9 nickase RuvC+,以及没有剪切活性的dCas9。(b)Cas12a识别剪切特异序列的ssDNA或dsDNA,并激活非特异性的DNA酶活性。(c)Cas13a识别剪切特异序列的ssRNA,并激活非特异性的RNA酶活性
Fig. 1 The nuclease activity of CRISPR-Cas protein: (a) Under the guidance of gRNA, the nuclease domains of Cas9 protein, RuvC and HNH, would target DNA double strands. Mutating of the nuclease domain on the basis of Cas9 can produce Cas9 nickase HNH+ and Cas9 nickase RuvC+, and deactivated dCas9. (b) Cas12a recognizes and cleaves ssDNA or dsDNA with specific sequences and activates non-specific DNase activity. (C) Cas13a recognizes and cleaves ssRNA with specific sequences and activates non-specific RNase activity
图2 基于CRISPR-Cas9的核酸检测技术:(a)在纸基试纸上利用Cas9的序列识别能力实现ZIKV病毒检测分型[37];(b)CRISPR-Cas9引发的切口酶介导的链置换扩增法(CRISDA)检测人和转基因大豆基因[40];(c)用一对荧光素酶修饰的dCas9对病原菌特征核酸序列检测[42]
Fig. 2 CRISPR/Cas9 based nucleic acid detection: (a) ZIKV virus detection and genotyping on paper test strips[37]; (b) detection of human and transgenic soybean genes using CRISPR-Cas9-triggered nicking endonuclease mediated strand displacement amplification method (CRISDA)[40]; (c) detection of characteristic nucleic acid sequences of pathogenic bacteria with a pair of luciferase-modified dCas9[42]
图3 Cas12a或Cas13a核酸检测技术原理
Fig. 3 Workflow of Cas12a or Cas13a nucleic acid detection
图4 (a)Cas12a和别构转录因子介导的小分子检测技术(CaT-SMelor)[56];(b)Cas12a和适配体介导的小分子检测技术[57];(c)Cas12a的智能响应水凝胶材料[58]
Fig. 4 (a) CRISPR-Cas12a- and aTF-mediated small molecule detector (CaT-SMelor)[56]. (b) CRISPR-Cas12a- and aptamer-mediated small molecule detector[57]. (c) Cas12a-responsive smart materials[58]
图5 CRISPR成像技术原理:(a)dCas9蛋白上修饰荧光蛋白;(b)gRNA骨架中插入适配体序列,由噬菌体衣壳修饰荧光蛋白,适配体序列和噬菌体衣壳相结合;(c)在dCas9上修饰重复的抗原表位决定簇,将荧光蛋白连接在抗体上,抗体和抗原表位决定簇相结合;(d)gRNA骨架上可以修饰重复的适配体序列,招募多个噬菌体衣壳修饰的荧光蛋白
Fig. 5 Illustration of CRISPR imaging technology: (a) dCas9 protein was fused with fluorescent protein; (b) The aptamer sequence was inserted into gRNA backbone and bound to a fluorescent protein fused to the phage capsid. (c) Repeated epitope determinants were fused on dCas9 and bound to antibodies fused to fluorescent proteins; (d) Repeated aptamers were inserted to the gRNA backbone to recruit multiple fluorescent proteins fused to the phage capsid
[1]
Hsu P D , Lander E S , Zhang F . Cell, 2014,157:1262. https://www.ncbi.nlm.nih.gov/pubmed/24906146

doi: 10.1016/j.cell.2014.05.010     URL     pmid: 24906146
[2]
Terns R M , Terns M P . Trends Genet., 2014,30:111. https://www.ncbi.nlm.nih.gov/pubmed/24555991

doi: 10.1016/j.tig.2014.01.003     URL     pmid: 24555991
[3]
Doudna J A , Charpentier E . Science, 2014,346:1077.
[4]
Wright A V , Nunez J K , Doudna J A . Cell, 2016,164:29. https://www.ncbi.nlm.nih.gov/pubmed/26771484

doi: 10.1016/j.cell.2015.12.035     URL     pmid: 26771484
[5]
Li W , Teng F , Li T D , Zhou Q . Nat. Biotechnol., 2013,31:684. https://www.ncbi.nlm.nih.gov/pubmed/23929337

doi: 10.1038/nbt.2652     URL     pmid: 23929337
[6]
Feng C , Wang X , Shi H , Yan Q , Zheng M , Li J , Zhang Q , Qin Y , Zhong Y , Mi J , Lai L . J. Genet., 2018,45:47.
[7]
Gao C . Nat. Rev. Mol. Cell Biol. 2018,19:275. https://www.ncbi.nlm.nih.gov/pubmed/29382940

doi: 10.1038/nrm.2018.2     URL     pmid: 29382940
[8]
Chen K , Wang Y , Zhang R , Zhang H , Gao C . Annu.Rev. Plant Biol., 2019,70:667. https://www.ncbi.nlm.nih.gov/pubmed/30835493

doi: 10.1146/annurev-arplant-050718-100049     URL     pmid: 30835493
[9]
Sheets T P , Park KE , Park CH , Swift S M , Powell A , Donovan D M , Telugu B P . Sci. Rep., 2018,8:3582. https://www.ncbi.nlm.nih.gov/pubmed/29483633

doi: 10.1038/s41598-018-22050-0     URL     pmid: 29483633
[10]
Pineda M , Moghadam F , Ebrahimkhani M R , Kiani S . ACS Synth. Biol., 2017,6:1614. https://www.ncbi.nlm.nih.gov/pubmed/28558198

doi: 10.1021/acssynbio.7b00011     URL     pmid: 28558198
[11]
Cyranoski D . Nature, 2016,535:476. https://www.ncbi.nlm.nih.gov/pubmed/27466105

doi: 10.1038/nature.2016.20302     URL     pmid: 27466105
[12]
Hu W , Kaminski R , Yang F , Zhang Y , Cosentino L , Li F , Luo B , Alvarez-Carbonell D , Garcia-Mesa Y , Karn J , Mo X , Khalili K . Proc. Natl. Acad. Sci. U. S. A., 2014,111:11461. https://www.ncbi.nlm.nih.gov/pubmed/25049410

doi: 10.1073/pnas.1405186111     URL     pmid: 25049410
[13]
Knight S C , Tjian R , Doudna J A . Angew. Chem. Int. Edit., 2018,57:4329. https://www.ncbi.nlm.nih.gov/pubmed/29080263

doi: 10.1002/anie.201709201     URL     pmid: 29080263
[14]
Perez-Pinera P , Kocak D D , Vockley C M , Adler A F , Kabadi A M , Polstein L R , Thakore P I , Glass K A , Ousterout D G , Leong K W , Guilak F , Crawford G E , Reddy T E , Gersbach C A . Nat. Methods, 2013,10:973. 6cca5b23-68a4-49cf-86c0-542ecf7226c2 https://www.ncbi.nlm.nih.gov/pubmed/23892895

doi: 10.1038/nmeth.2600     URL     pmid: 23892895
[15]
Gilbert L A , Horlbeck M A , Adamson B , Villalta J E , Chen Y , Whitehead E H , Guimaraes C , Panning B , Ploegh H L , Bassik M C , Qi L S , Kampmann M , Weissman J S . Cell, 2014,159:647. https://www.ncbi.nlm.nih.gov/pubmed/25307932

doi: 10.1016/j.cell.2014.09.029     URL     pmid: 25307932
[16]
Farzadfard F , Perli S D , Lu T K . ACS Synth. Biol., 2013,2:604. c561b0bf-9779-45d9-8410-67f5c8d14a2b http://dx.doi.org/10.1021/sb400081r

doi: 10.1021/sb400081r     URL     pmid: 23977949
[17]
Chavez A , Scheiman J , Vora S , Pruitt B W , Tuttle M , Iyer E P R , Lin S , Kiani S , Guzman C D , Wiegand D J , Ter-Ovanesyan D , Braff J L , Davidsohn N , Housden B E , Perrimon N , Weiss R , Aach J , Collins J J , Church G M . Nat. Methods, 2015,12:326. https://www.ncbi.nlm.nih.gov/pubmed/25730490

doi: 10.1038/nmeth.3312     URL     pmid: 25730490
[18]
Vojta A , Dobrinic P , Tadic V , Bockor L , Korac P , Julg B , Klasic M , Zoldos V . Nucleic Acids Res., 2016,44:5615. https://www.ncbi.nlm.nih.gov/pubmed/26969735

doi: 10.1093/nar/gkw159     URL     pmid: 26969735
[19]
Thakore P I D’Ippolito A M , Song L , Safi A , Shivakumar N K , Kabadi A M , Reddy T E , Crawford G E , Gersbach C A . Nat. Methods, 2015,12:1143. https://www.ncbi.nlm.nih.gov/pubmed/26501517

doi: 10.1038/nmeth.3630     URL     pmid: 26501517
[20]
Liu X S , Wu H , Ji X , Stelzer Y , Wu X , Czauderna S , Shu J , Dadon D , Young R A , Jaenisch R . Cell, 2016,167:233. https://www.ncbi.nlm.nih.gov/pubmed/27662091

doi: 10.1016/j.cell.2016.08.056     URL     pmid: 27662091
[21]
Hilton I B , D’Ippolito A M , Vockley C M , Thakore P I , Crawford G E , Reddy T E , Gersbach C A . Nat. Biotechnol., 2015,33:510. https://www.ncbi.nlm.nih.gov/pubmed/25849900

doi: 10.1038/nbt.3199     URL     pmid: 25849900
[22]
Sander J D , Joung J K . Nat. Biotechnol., 2014,32:347. https://www.ncbi.nlm.nih.gov/pubmed/24584096

doi: 10.1038/nbt.2842     URL     pmid: 24584096
[23]
Knott G J , Doudna J A . Science, 2018,361:866. https://www.ncbi.nlm.nih.gov/pubmed/30166482

doi: 10.1126/science.aat5011     URL     pmid: 30166482
[24]
Makarova K S , Haft D H , Barrangou R , Brouns S J J , Charpentier E , Horvath P , Moineau S , Mojica F J M , Wolf Y I , Yakunin A F , van der Oost J , Koonin E V . Nat. Rev. Microbiol., 2011,9:467. https://www.ncbi.nlm.nih.gov/pubmed/21552286

doi: 10.1038/nrmicro2577     URL     pmid: 21552286
[25]
Gaj T , Gersbach C A , Barbas C F . Trends Biotechnol., 2013,31:397. https://www.ncbi.nlm.nih.gov/pubmed/23664777

doi: 10.1016/j.tibtech.2013.04.004     URL     pmid: 23664777
[26]
Horvath P , Barrangou R . Science, 2010,327:167. https://www.ncbi.nlm.nih.gov/pubmed/20056882

doi: 10.1126/science.1179555     URL     pmid: 20056882
[27]
Hille F , Richter H , Wong S P , Bratovic M , Ressel S , Charpentier E . Cell, 2018,172:1239. https://www.ncbi.nlm.nih.gov/pubmed/29522745

doi: 10.1016/j.cell.2017.11.032     URL     pmid: 29522745
[28]
Zetsche B , Gootenberg J S , Abudayyeh O O , Slaymaker I M , Makarova K S , Essletzbichler P , Volz S E , Joung J , van der Oost J , Regev A , Koonin E V , Zhang F . Cell, 2015,163:759. https://www.ncbi.nlm.nih.gov/pubmed/26422227

doi: 10.1016/j.cell.2015.09.038     URL     pmid: 26422227
[29]
Abudayyeh O O , Gootenberg J S , Konermann S , Joung J , Slaymaker I M , Cox D B T , Shmakov S , Makarova K S , Semenova E , Minakhin L , Severinov K , Regev A , Lander E S , Koonin E V , Zhang F . Science, 2016, 353:aaf5573. https://www.ncbi.nlm.nih.gov/pubmed/27256883

doi: 10.1126/science.aaf5573     URL     pmid: 27256883
[30]
Shmakov S , Smargon A , Scott D , Cox D , Pyzocha N , Yan W , Abudayyeh O O , Gootenberg J S , Makarova K S , Wolf Y I , Severinov K , Zhang F , Koonin E V . Nat. Rev. Microbiol., 2017,15:169. https://www.ncbi.nlm.nih.gov/pubmed/28111461

doi: 10.1038/nrmicro.2016.184     URL     pmid: 28111461
[31]
Gootenberg J S , Abudayyeh O O , Kellner M J , Joung J , Collins J J , Zhang F . Science, 2018,360:439. https://www.ncbi.nlm.nih.gov/pubmed/29449508

doi: 10.1126/science.aaq0179     URL     pmid: 29449508
[32]
Cong L , Ran F A , Cox D , Lin S , Barretto R , Habib N , Hsu P D , Wu X , Jiang W , Marraffini L A , Zhang F . Science, 2013,339:819. c45b480b-2272-47f5-ad31-48297cab8820 http://dx.doi.org/10.1126/science.1229223

doi: 10.1126/science.1229223     URL    
[33]
Gasiunas G , Barrangou R , Horvath P , Siksnys V . Proc. Natl. Acad. Sci. U. S. A., 2012,109:E2579. https://www.ncbi.nlm.nih.gov/pubmed/22949671

doi: 10.1073/pnas.1208507109     URL     pmid: 22949671
[34]
Jinek M , Chylinski K , Fonfara I , Hauer M , Doudna J A , Charpentier E . Science, 2012,337:816. https://www.ncbi.nlm.nih.gov/pubmed/22745249

doi: 10.1126/science.1225829     URL     pmid: 22745249
[35]
Ran F A , Hsu P D , Lin C Y , Gootenberg J S , Konermann S , Trevino A E , Scott D A , Inoue A , Matoba S , Zhang Y , Zhang F . Cell, 2013,154:1380. be0ef74e-49d9-4232-8cf8-f1ae66a8fc52 http://dx.doi.org/10.1016/j.cell.2013.08.021

doi: 10.1016/j.cell.2013.08.021     URL    
[36]
Mali P , Esvelt K M , Church G M . Nat. Methods, 2013,10:957. 420f53d6-83dd-48a5-861f-018bd2792ef0 http://dx.doi.org/10.1038/NMETH.2649

doi: 10.1038/NMETH.2649     URL    
[37]
Pardee K , Green A A , Takahashi M K , Braff D , Lambert G , Lee J W , Ferrante T , Ma D , Donghia N , Fan M , Daringer N M , Bosch I , Dudley D M , O’Connor D H , Gehrke L , Collins J J . Cell, 2016,165:1255. https://www.ncbi.nlm.nih.gov/pubmed/27160350

doi: 10.1016/j.cell.2016.04.059     URL     pmid: 27160350
[38]
Takahashi M K , Tan X , Dy A J , Braff D , Akana R T , Furuta Y , Donghia N , Ananthakrishnan A , Collins J J . Nat. Commun., 2018,9:3347. https://www.ncbi.nlm.nih.gov/pubmed/30131493

doi: 10.1038/s41467-018-05864-4     URL     pmid: 30131493
[39]
Zhang K , Deng R , Li Y , Zhang L , Li J . Chem. Sci., 2016,7:4951. https://www.ncbi.nlm.nih.gov/pubmed/30155144

doi: 10.1039/c6sc01355d     URL     pmid: 30155144
[40]
Zhou W , Hu L , Ying L , Zhao Z , Chu P K , Yu X F . Nat. Commun., 2018,9:5012. https://www.ncbi.nlm.nih.gov/pubmed/30479331

doi: 10.1038/s41467-018-07324-5     URL     pmid: 30479331
[41]
Wang T , Liu Y , Sun H H , Yin B C , Ye B C . Angew. Chem. Int. Edit., 2019,58:5382. https://www.ncbi.nlm.nih.gov/pubmed/30773764

doi: 10.1002/anie.201901292     URL     pmid: 30773764
[42]
Zhang Y , Qian L , Wei W , Wang Y , Wang B , Lin P , Liu W , Xu L , Li X , Liu D , Cheng S , Li J , Ye Y , Li H , Zhang X , Dong Y , Zhao X , Liu C , Zhang H M , Ouyang Q , Lou C . . ACS Synth. Biol., 2017,6:211. https://www.ncbi.nlm.nih.gov/pubmed/27718551

doi: 10.1021/acssynbio.6b00215     URL     pmid: 27718551
[43]
Gootenberg J S , Abudayyeh O O , Lee J W , Essletzbichler P , Dy A J , Joung J , Verdine V , Donghia N , Daringer N M , Freije C A , Myhrvold C , Bhattacharyya R P , Livny J , Regev A , Koonin E V , Hung D T , Sabeti P C , Collins J J , Zhang F . Science, 2017,356:438. https://www.sciencemag.org/lookup/doi/10.1126/science.aam9321

doi: 10.1126/science.aam9321     URL     pmid: 28408723
[44]
Myhrvold C , Freije C A , Gootenberg J S , Abudayyeh O O , Metsky H C , Durbin A F , Kellner M J , Tan A L , Paul L M , Parham L A , Garcia K F , Barnes K G , Chak B , Mondini A , Nogueira M L , Isern S , Michael S F , Lorenzana I , Yozwiak N L , MacInnis B L , Bosch I , Gehrke L , Zhang F , Sabeti P C . Science, 2018,360:444. https://www.ncbi.nlm.nih.gov/pubmed/29700266

doi: 10.1126/science.aas8836     URL     pmid: 29700266
[45]
Fonfara I , Richter H , Bratovic M , Le Rhun A , Charpentier E . Nature, 2016,532:517. https://www.ncbi.nlm.nih.gov/pubmed/27096362

doi: 10.1038/nature17945     URL     pmid: 27096362
[46]
Chen J S , Ma E , Harrington L B , Da Costa M , Tian X , Palefsky J M , Doudna J A . Science, 2018,360:436. https://www.ncbi.nlm.nih.gov/pubmed/29449511

doi: 10.1126/science.aar6245     URL     pmid: 29449511
[47]
Li S Y , Cheng Q X , Wang J M , Li X Y , Zhang Z L , Gao S , Cao R B , Zhao G P , Wang J . Cell Discov., 2018,4:20. https://www.ncbi.nlm.nih.gov/pubmed/29707234

doi: 10.1038/s41421-018-0028-z     URL     pmid: 29707234
[48]
Qian C , Wang R , Wu H , Zhang F , Wu J , Wang L . Anal. Chem., 2019,91:11362. https://www.ncbi.nlm.nih.gov/pubmed/31403279

doi: 10.1021/acs.analchem.9b02554     URL     pmid: 31403279
[49]
Li Y , Mansour H , Wang T , Poojari S , Li F . Anal. Chem., 2019,91:11510. https://www.ncbi.nlm.nih.gov/pubmed/31478642

doi: 10.1021/acs.analchem.9b03545     URL     pmid: 31478642
[50]
Shao N , Han X , Song Y , Zhang P , Qin L . Anal. Chem., 2019,91:12384. https://www.ncbi.nlm.nih.gov/pubmed/31461619

doi: 10.1021/acs.analchem.9b02925     URL     pmid: 31461619
[51]
Wang B , Wang R , Wang D , Wu J , Li J , Wang J , Liu H , Wang Y . Anal. Chem., 2019,91:12156. https://www.ncbi.nlm.nih.gov/pubmed/31460749

doi: 10.1021/acs.analchem.9b01526     URL     pmid: 31460749
[52]
Li L , Li S , Wu N , Wu J , Wang G , Zhao G , Wang J . ACS Synth. Biol., 2019,8:2228. https://www.ncbi.nlm.nih.gov/pubmed/31532637

doi: 10.1021/acssynbio.9b00209     URL     pmid: 31532637
[53]
Hajian R , Balderston S Tran T , deBoer T , Etienne J , Sandhu M , Wauford N A , Chung J Y , Nokes J , Athaiya M , Paredes J , Peytavi R , Goldsmith B , Murthy N , Conboy I M , Aran K . Nat. Biomed. Eng., 2019,3:427. https://doi.org/10.1038/s41551-019-0371-x

doi: 10.1038/s41551-019-0371-x     URL     pmid: 31097816
[54]
Yang W , Restrepo-Perez L , Bengtson M , Heerema S J Birnie A , van der Torre J , Dekker C . Nano Lett., 2018,18:6469. https://www.ncbi.nlm.nih.gov/pubmed/30187755

doi: 10.1021/acs.nanolett.8b02968     URL     pmid: 30187755
[55]
Qin P , Park M , Alfson K J , Tamhankar M , Carrion R , Patterson J L , Griffiths A , He Q , Yildiz A , Mathies R , Du K . ACS Sensors, 2019,4:1048. https://www.ncbi.nlm.nih.gov/pubmed/30860365

doi: 10.1021/acssensors.9b00239     URL     pmid: 30860365
[56]
Liang M , Li Z , Wang W , Liu J , Liu L , Zhu G , Karthik L , Wang M , Wang K F , Wang Z , Yu J , Shuai Y , Yu J , Zhang L , Yang Z , Li C , Zhang Q , Shi T , Zhou L , Xie F , Dai H , Liu X , Zhang J , Liu G , Zhuo Y , Zhang B , Liu C , Li S , Xia X , Tong Y , Liu Y , Alterovitz G , Tan G Y , Zhang L X . Nat. Commun., 2019,10:3672.
[57]
Xiong Y , Zhang J , Yang Z , Mou Q , Ma Y , Xiong Y , Lu Y . J. Am. Chem. Soc., 2019, DOI: 10.1021/jacs.9b09211.
[58]
English M A , Soenksen L R , Gayet R V , de Puig H , Angenent-Mari N M , Mao A S , Nguyen P Q , Collins J J . Science, 2019,365:780. https://www.ncbi.nlm.nih.gov/pubmed/31439791

doi: 10.1126/science.aaw5122     URL     pmid: 31439791
[59]
Han D , Li J , Tan W . Science, 2019,365:754. https://www.ncbi.nlm.nih.gov/pubmed/31439783

doi: 10.1126/science.aay4198     URL     pmid: 31439783
[60]
Misteli T . Cell, 2013,152:1209. https://www.ncbi.nlm.nih.gov/pubmed/23498929

doi: 10.1016/j.cell.2013.02.048     URL     pmid: 23498929
[61]
Deng W , Shi X , Tjian R , Lionnet T , Singer R H . Proc. Natl. Acad. Sci. U. S. A., 2015,112:11870. https://www.ncbi.nlm.nih.gov/pubmed/26324940

doi: 10.1073/pnas.1515692112     URL     pmid: 26324940
[62]
Zhang K , Deng R , Teng X , Li Y , Sun Y , Ren X , Li J . J. Am. Chem. Soc., 2018,140:11293. https://www.ncbi.nlm.nih.gov/pubmed/30125486

doi: 10.1021/jacs.8b05309     URL     pmid: 30125486
[63]
Chen B , Gilbert L A , Cimini B A , Schnitzbauer J , Zhang W , Li G W , Park J , Blackburn E H , Weissman J S , Qi L S , Huang B . Cell, 2013,155:1479. https://www.ncbi.nlm.nih.gov/pubmed/24360272

doi: 10.1016/j.cell.2013.12.001     URL     pmid: 24360272
[64]
Gu B , Swigut T , Spencley A , Bauer M R , Chung M Y , Meyer T , Wysocka J . Science, 2018,359:1050. https://www.ncbi.nlm.nih.gov/pubmed/29371426

doi: 10.1126/science.aao3136     URL     pmid: 29371426
[65]
Tanenbaum M E , Gilbert L A , Qi L S , Weissman J S , Vale R D . Cell, 2014,159:635. https://www.ncbi.nlm.nih.gov/pubmed/25307933

doi: 10.1016/j.cell.2014.09.039     URL     pmid: 25307933
[66]
Qin P W , Parlak M , Kuscu C , Bandaria J , Mir M , Szlachta K , Singh R , Darzacq X , Yildiz A , Adli M . Nat. Commun., 2017,8:14725. https://www.ncbi.nlm.nih.gov/pubmed/28290446

doi: 10.1038/ncomms14725     URL     pmid: 28290446
[67]
Ma H H , Tu L C , Naseri A , Chung Y C , Grunwald D , Zhang S J , Pederson T . Nat. Methods, 2018,15:928. https://www.ncbi.nlm.nih.gov/pubmed/30377374

doi: 10.1038/s41592-018-0174-0     URL     pmid: 30377374
[68]
Hong Y , Lu G , Duan J , Liu W , Zhang Y . Genome Biol., 2018,19:39. https://www.ncbi.nlm.nih.gov/pubmed/29566733

doi: 10.1186/s13059-018-1413-5     URL     pmid: 29566733
[69]
Shao S P , Zhang W W , Hu H , Xue B X , Qin J S , Sun C Y , Sun Y A , Wei W S , Sun Y J . Nucleic Acids Res., 2016,44:e86. https://www.ncbi.nlm.nih.gov/pubmed/26850639

doi: 10.1093/nar/gkw066     URL     pmid: 26850639
[70]
Fu Y , Rocha P P , Luo V M , Raviram R , Deng Y , Mazzoni E O , Skok J A . Nat. Commun., 2016,7:11707. https://www.ncbi.nlm.nih.gov/pubmed/27222091

doi: 10.1038/ncomms11707     URL     pmid: 27222091
[71]
Ma H , Tu L C , Naseri A , Huisman M , Zhang S , Grunwald D , Pederson T . Nat. Biotechnol., 2016,34:528. https://www.ncbi.nlm.nih.gov/pubmed/27088723

doi: 10.1038/nbt.3526     URL     pmid: 27088723
[72]
Yang L Z , Wang Y , Li S Q , Yao R W , Luan P F , Wu H , Carmichael G G , Chen L L . Mol. Cell, 2019, DOI: 10.1016/j.molcel.2019.10.024.
[73]
Nelles D A , Fang M Y , O’Connell M R , Xu J L , Markmiller S J , Doudna J A , Yeo G W . Cell, 2016,165:488. https://www.ncbi.nlm.nih.gov/pubmed/26997482

doi: 10.1016/j.cell.2016.02.054     URL     pmid: 26997482
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[3] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[4] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[5] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[6] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[7] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[8] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[9] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[10] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[11] 桂珍, 严枫, 李金昌, 葛梦圆, 鞠熀先. 锁核酸分子信标在分子识别与生物分析中的应用[J]. 化学进展, 2015, 27(10): 1448-1458.
[12] 宋英攀, 冯苗, 詹红兵*. 石墨烯的边界效应在电化学生物传感器中的应用[J]. 化学进展, 2013, 25(05): 698-706.
[13] 李晶, 杨晓英*. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013, 25(0203): 380-396.
[14] 闻艳丽, 林美华, 裴昊, 鲁娜, 樊春海*. 基于电化学技术的microRNA生物传感器[J]. 化学进展, 2012, (9): 1656-1664.
[15] 宋英攀, 冯苗, 詹红兵*. 石墨烯纳米复合材料在电化学生物传感器中的应用[J]. 化学进展, 2012, (9): 1665-1673.
阅读次数
全文


摘要

基于CRISPR的生物分析化学技术