English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 785-796 DOI: 10.7536/PC171226 前一篇   后一篇

• 综述 •

新型空穴传输材料CuSCN在光电器件中的应用

亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*   

  1. 南京邮电大学 有机电子与信息显示国家重点实验室培育基地 江苏省生物传感材料与技术重点实验室 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023
  • 收稿日期:2017-12-14 修回日期:2018-01-23 出版日期:2018-06-15 发布日期:2018-03-12
  • 通讯作者: 陈润锋,e-mail:iamrfchen@njupt.edu.cn;黄维,e-mail:iamwhuang@njupt.edu.cn E-mail:iamrfchen@njupt.edu.cn;iamwhuang@njupt.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61704089,21674049)资助

Applications of Novel Hole-Transporting Material Copper(Ⅰ) Thiocyanate (CuSCN) in Optoelectronic Devices

Yuanyuan Qi, Mingguang Li, Honglei Wang, Wen Zhang, Runfeng Chen*, Wei Huang*   

  1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2017-12-14 Revised:2018-01-23 Online:2018-06-15 Published:2018-03-12
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.61704089,21674049).
硫氰化亚铜(CuSCN)是一种良好的p型宽禁带透明半导体材料,具有较高的透光性、高导电率、易于常温制备、可溶液加工性以及价格低廉等优点,使得CuSCN成为未来大面积制备光电器件的有力竞争者。本文概述了CuSCN半导体材料的晶体结构、光学性质以及空穴传输特性等基本物理性质,介绍了几种常见CuSCN薄膜的制备方法,包括溶液加工成膜法、电化学沉积法和连续性离子层吸附与反应法等;对上述不同的制备方法结合实际应用进行了阐述,同时对比与讨论了各种制备方法的优点和缺点;接下来总结了CuSCN材料作为空穴传输层在场效应晶体管(FETs)、有机电致发光器件(OLEDs)、有机太阳能电池(OSCs)以及有机-无机杂化太阳能电池(HSCs)等领域的应用及其研究进展,最后对CuSCN所面临的问题以及研究前景进行了展望。
As a p-type transparent semiconducting material with wide bandgap, Copper(Ⅰ) thiocyanate (CuSCN) exhibits many advantages, including high transmittance, high conductivity, easy preparation at ambient temperature, solution processable and low cost. Therefore, CuSCN has been widely expected to be a strong alternative as hole-injecting/hole-transporting layer in the application of large-area and inexpensive plastic electronics. This review provides an overview of the fundamental physical properties of CuSCN material, covering crystal structures, optical properties and hole-transporting properties. A variety of preparation methods, ranging from solution processing, electrochemical deposition, to successive ionic layer adsorption and reaction, have so far been implemented for the fabrication of CuSCN thin-films in optoelectronic devices. These techniques commonly used for the deposition of CuSCN films are introduced with practical examples and the advantages and disadvantages of different preparation methods are compared and discussed. Then, the applications of CuSCN semiconducting materials as a hole-transporting layer in the field of field effect transistors(FETs), organic light emitting diodes(OLEDs), organic solar cells(OSCs), and hybrid organic-inorganic solar cells(HSCs) are systematically summarized. A large variety of CuSCN-based optoelectronic devices reported in the literature to date exhibit efficiencies that are far superior to those conventional devices based on common hole-transporting materials, demonstrating significant potentials for a host of relevant applications. Finally, the current difficulties and future research directions of the CuSCN semiconducting material are also discussed to give an outlook of its prospect trends and application potentials, especially in various optoelectronic devices.
Contents
1 Introduction
2 Fundamental physical properties of CuSCN
2.1 Structural properties
2.2 Optical properties
2.3 Hole-transporting abilities
3 Preparation methods of CuSCN thin film
3.1 Solution processing
3.2 Electrochemical deposition
3.3 Successive ionic layer adsorption and reaction
4 Application of CuSCN in optoelectronic devices
4.1 Field effect transistors (FETs)
4.2 Organic light emitting diodes (OLEDs)
4.3 Organic solar cells (OSCs)
4.4 Hybrid organic-inorganic solar cells (HSCs)
5 Conclusion and outlook

中图分类号: 

()
[1] Wong W Y, Ho C L. J. Mater. Chem., 2009, 19:4457.
[2] Thompson B C, Frechet J M J. Angew. Chem. Int. Ed., 2008, 47:58.
[3] Yip H L, Jen A K Y. Energy Environ. Sci., 2012, 5:5994.
[4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graetzel M. Nature, 2013, 499:316.
[5] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342:341.
[6] Treat N D, Campos L M, Dimitriou M D, Ma B W, Chabinyc M L, Hawker C J. Adv. Mater., 2010, 22:4982.
[7] Hadipour A, Cheyns D, Heremans P, Rand B P. Adv. Energy Mater., 2011, 1:930.
[8] Steim R, Kogler F R, Brabec C J. J. Mater. Chem., 2010, 20:2499.
[9] Ecker B, Posdorfer J, von Hauff E. Sol. Energy Mater. Sol. Cells, 2013, 116:176.
[10] De Kok M M, Buechel M, Vulto S I E, van de Weijer P, Meulenkamp E A, de Winter S, Mank A J G, Vorstenbosch H J M, Weijtens C H L, van Elsbergen V. Phys. Status Solidi A, 2004, 201:1342.
[11] Jorgensen M, Norrman K, Krebs F C. Sol. Energy Mater. Sol. Cells, 2008, 92:686.
[12] Dos Reis Benatto G A, Roth B, Madsen M V, Hoesel M, Sondergaard R R, Jorgensen M, Krebs F C. Adv. Energy Mater., 2014, 4:1400732.
[13] Shao S Y, Liu J, Bergqvist J, Shi S, Veit C, Wuerfel U, Xie Z Y, Zhang F L. Adv. Energy Mater., 2013, 3:349.
[14] Qin P L, Fang G J, Cheng F, Ke W J, Lei H W, Wang H N, Zhao X Z. ACS Appl. Mater. Inter., 2014, 6:2963.
[15] Manders J R, Tsang S W, Hartel M J, Lai T H, Chen S, Amb C M, Reynolds J R, So F. Adv. Funct. Mater., 2013, 23:2993.
[16] Zhang J, Wang J T, Fu Y Y, Zhang B H, Xie Z Y. RSC Adv., 2015, 5:28786.
[17] Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H. Angew. Chem. Int. Ed., 2014, 53:12571.
[18] Murase S, Yang Y. Adv. Mater., 2012, 24:2459.
[19] Lee D Y, Na S I, Kim S S. Nanoscale, 2016, 8:1513.
[20] Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J. Nano Lett., 2014, 14:5561.
[21] Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L. Adv. Energy Mater., 2015, 5:1401943.
[22] Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J. J. Phys. Chem. C, 2010, 114:9111.
[23] Blue R, Mathers F. J. Electrochem. Soc., 1933, 63:231.
[24] Kabešová M, Dunaj-jur D? o M, Serator M, Ga?o J, Garaj J. Inorg. Chim. Acta, 1976, 17:161.
[25] Ji W, Yue G Q, Ke F S, Wu S, Zhao H B, Chen L Y, Wang S Y, Jia Y. J. Korean Phys. Soc., 2012, 60:1253.
[26] Tennakone K, Kumarasinghe A R, Sirimanne P M, Kumara G R R. Thin Solid Films, 1995, 261:307.
[27] Tennakone K, Jayatissa A H, Fernando C A N, Wickramanayake S, Punchihewa S, Weerasena L K, Premasiri W D R. Phys. Status Solidi A, 1987, 103:491.
[28] Ptaszynski B, Skiba E, Krystek J. Thermochim. Acta, 1998, 319:75.
[29] Rietman E A. J. Mater. Sci. Lett., 1985, 4:542.
[30] Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J H, Yan F, O'Regan B C, Amassian A, Anthopoulos T D. Adv. Mater., 2013, 25:1504.
[31] Wu W B, Jin Z G, Hua Z, Fu Y N, Qiu J J. Electrochim. Acta, 2005, 50:2343.
[32] Ni Y, Jin Z, Fu Y. J. Am. Ceram. Soc., 2007, 90:2966.
[33] Pattanasattayavong P, Ndjawa G O N, Zhao K, Chou K W, Yaacobi-Gross N, O'Regan B C, Amassian A, Anthopoulos T D. Chem. Commun., 2013, 49:4154.
[34] Yaacobi-Gross N, Treat N D, Pattanasattayavong P, Faber H, Perumal A K, Stingelin N, Bradley D D C, Stavrinou P N, Heeney M, Anthopoulos T D. Adv. Energy Mater., 2015, 5:1401529.
[35] Perumal A, Faber H, Yaacobi-Gross N, Pattanasattayavong P, Burgess C, Jha S, McLachlan M A, Stavrinou P N, Anthopoulos T D, Bradley D D C. Adv. Mater., 2015, 27:93.
[36] Murugadoss G, Thangamuthu R, Kumar S M S. Sol. Energy Mater. Sol. Cells, 2017, 164:56.
[37] Ogawa Y, White M S, Sun L N, Scharber M C, Sariciftci N S, Yoshida T. ChemPhysChem, 2014, 15:1070.
[38] Ghosh S, Sarkar S K. in 4 International Conference on Advances in Energy Research, Ed. P. C. Ghosh, 2014, 54:777.
[39] Iwamoto T, Ogawa Y, Sun L N, White M S, Glowacki E D, Scharber M C, Sariciftci N S, Manseki K, Sugiura T, Yoshida T. J. Phys. Chem. C, 2014, 118:16581.
[40] Sanchez S, Chappaz-Gillot C, Salazar R, Muguerra H E, Arbaoui E S, Berson S C, Levy-Clement C, Ivanova V. J.Solid State Electr., 2013, 17:391.
[41] Selk Y T, Yoshida T, Oekermann T. Thin Solid Films, 2008, 516:7120.
[42] Paunovic M, Schlesinger M. Fundamentals of Electrochemical Deposition. Hoboken, NJ:Wiley, 2006.
[43] Fu P, Guo X, Wang Z L, Yu S W, Zhou L Y, Yu W, Zhang J, Li C. RSC Adv., 2016, 6:56845.
[44] Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K. J. Phys. Chem. Lett., 2014, 5:1748.
[45] Chappaz-Gillot C, Berson S, Salazar R, Lechene B, Aldakov D, Delaye V, Guillerez S, Ivanova V. Sol. Energy Mater. Sol. Cells, 2014, 120:163.
[46] Chappaz-Gillot C, Salazar R, Berson S, Ivanova V. Electrochem. Commun., 2012, 24:1.
[47] Chappaz-Gillot C, Salazar R, Berson S, Ivanova V. Electrochim. Acta, 2013, 110:375.
[48] Sankapal B R, Goncalves E, Ennaoui A, Lux-Steiner M C. Thin Solid Films, 2004, 451:128.
[49] Gao X D, Li X M, Yu W D, Qiu J J, Gan X Y, Thin Solid Films, 2008, 517:554.
[50] Zhuge F W, Gao X D, Li X M, Gan X Y. J. Inorg. Mater., 2009, 24:8.
[51] Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, LinY H, Faber H, Pattanasattayavong P, Li J H, Yan F, McLachlan M A, Payne D J, Heeney M, Anthopoulos T D. Adv. Funct. Mater., 2017, 27:1701818.
[52] Petti L, Pattanasattayavong P, Lin Y H, Munzenrieder N, Cantarella G, Yaacobi-Gross N, Yan F, Troster G, Anthopoulos T D. Appl. Phys. Lett., 2017, 110:113504.
[53] Xu L J, Wang J Y, Zhu X F, Zeng X C, Chen Z N. Adv. Funct. Mater., 2015, 25:3033.
[54] Thejokalyani N, Dhoble S J. Renew. Sust. Energ. Rev., 2014, 32:448.
[55] Xing X, Zhong L W, Zhang L P, Chen Z J, Qu B, Chen E Q, Xiao L X, Gong Q H. J. Phys. Chem. C, 2013, 117:25405.
[56] Chaudhary N, Chaudhary R, Kesari J P, Patra A, Chand S. J. Mater. Chem. C, 2015, 3:11886.
[57] Chaudhary N, Chaudhary R, Kesari J P, Patra A. Opt. Mater., 2017, 69:367.
[58] Takahashi K, Suzaka S, Sigeyama Y, Yamaguchi T, Nakamura J, Murata K. Chem. Lett., 2007, 36:762.
[59] Eerenstein W, Slooff L H, Veenstra S C, Kroon J M. Thin Solid Films, 2008, 516:7188.
[60] O'Regan B, Schwartz D T. Chem. Mater., 1998, 10:1501.
[61] O'Regan B, Schwartz D T. Chem. Mater., 1995, 7:1349.
[62] Kumara G R R A, Konno A, Senadeera G K R, Jayaweera P V V, de Silva D B R A, Tennakone K. Sol. Energy Mater. Sol. Cells, 2001, 69:195.
[63] Perera V P S, Senevirathna M K I, Pitigala P, Tennakone K. Sol. Energy Mater. Sol. Cells, 2005, 86:443.
[64] Premalal E V A, Kumara G R R A, Rajapakse R M G, Shimomura M, Murakami K, Konno A. Chem. Commun., 2010, 46:3360.
[65] Premalal E V A, Dematage N, Kumara A R R A, Rajapakse R M G, Shimomura M, Murakami K, Konno A. J. Power Sources, 2012, 203:288.
[66] Premalal E V A, Dematage N, Konno A. Chem. Lett., 2012, 41:510.
[67] Li M H, Shen P S, Wang K C, Guo T F, Chen P. J. Mater. Chem. A, 2015, 3:9011.
[68] Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P. ChemPhysChem, 2014, 15:1194.
[69] Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Graetzel M. Nat. Commun., 2014, 5:3834.
[70] Chavhan S, Miguel O, Grande H J, Gonzalez-Pedro V, Sanchez R S, Barea E M, Mora-Sero I, Tena-Zaera R. J. Mater. Chem. A, 2014, 2:12754.
[71] Ye S Y, Sun W H, Li Y L, Yan W B, Peng H T, Bian Z Q, Liu Z W, Huang C H. Nano Lett., 2015, 15:3723.
[72] Li M, Wang Z K, Yang Y G, Hu Y, Feng S L, Wang J M, Gao X Y, Liao L S. Adv. Energy Mater., 2016, 6:1601156.
[73] Ito S, Tanaka S, Nishino H. Chem. Lett., 2015, 44:849.
[74] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M. Science, 2017, 358:768.
[1] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[2] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[3] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[4] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[5] 曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件[J]. 化学进展, 2016, 28(4): 459-470.
[6] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[7] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.
[8] 朱伟钢, 甄永刚, 董焕丽, 付红兵, 胡文平. 有机共晶光电功能材料与器件[J]. 化学进展, 2014, 26(08): 1292-1306.
[9] 黄艳琴,范曲立,黄维. 水溶性共轭聚电解质*[J]. 化学进展, 2008, 20(04): 574-585.