English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 459-470 DOI: 10.7536/PC151027 前一篇   后一篇

• 综述与评论 •

二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件

曾甜1,2, 尤运城1,2, 王旭峰1,2, 胡廷松2, 台国安1,2*   

  1. 1. 南京航空航天大学航空宇航学院 机械结构与控制国家重点实验室 纳智能材料器件教育部重点实验室和纳米科学研究所 南京 210016;
    2. 南京航空航天大学材料科学与技术学院 南京 210016
  • 收稿日期:2015-10-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 台国安 E-mail:taiguoan@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61474063, 11302100),南京航空航天大学基金(No.NJ20140002, NE2015102, NZ2015101),江苏省自然科学基金项目(No.SBK2015022205),机械结构力学与控制国家重点实验室基金项目(No.0413Y02, 0415G02)和江苏省高校优势学科建设工程资助

Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals

Zeng Tian1,2, You Yuncheng1,2, Wang Xufeng1,2, Hu Tingsong2, Tai Guoan1,2*   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2015-10-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.61474063, 11302100), the Innovation Fund of NUAA(No.NJ20140002, NE2015102, NZ2015101),the National Natural Science Foundation of Jiangsu Province(No.SBK2015022205), SKL Funding of NUAA(No.0413Y02, 0415G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
二维过渡族金属硫属化合物因其带隙具有强烈的层数依赖性而在电子器件方面具有广泛的应用前景.其中单层二硫化钼(MoS2)是该系列材料中最典型的一种直接带隙半导体,它具有优异的光、电、磁、热和力学性能.二维MoS2有望在光电探测、光伏器件、场效应晶体管、存储器件、谷电子和自旋器件、温差电器件、微纳机电器件和系统等方面得以广泛应用.化学气相沉积(CVD)法已成为制备二维过渡族金属硫属化合物如MoS2、MoSe2、WS2和WSe2等原子层薄膜的主要手段,尤其科学界利用CVD法对二维MoS2材料进行了深入的制备探索,通过该方法制备的MoS2薄膜在电子和光电器件方面已经有广泛研究.本文将从二维MoS2的基本物性出发,详细介绍CVD法制备MoS2的各种工艺过程,如热分解硫代硫酸盐法、硫化Mo(MoO3-x)薄膜制备法、MoO3-x粉体与硫属前驱体气相合成法和钼箔表面直接硫化法,并介绍了基于MoS2的二维异质结构筑方法.在制备材料的基础上,详细阐述了二维MoS2在场效应晶体管、光电探测器、柔性电子器件以及异质结器件方面的应用,并展望了二维材料在半导体器件中的应用前景.
Transition metal dichalcogenides (TMDCs) materials has a great potential for applications in electronics and optoelectronics devices owing to its tuning band gap strongly depending on the thickness. Among the TMDCs materials, monolayer MoS2, as a direct band gap semiconductor, has fascinating optical, electrical, magnetic, thermal and mechanical properties. 2D MoS2 is expected to be widely used in photodetectors, photovoltic devices, field effect transistors, memory devices, valley electronics, spintronics, thermoelectrics, micro-nanoelectromechanical devices and systems. At present, chemical vapor deposition (CVD) is the most promising method to synthesize large-area two-dimensional transition metal chalcogenide (such as MoS2, MoSe2, WS2 and WSe2) atomic layers. Electronic and optoelectronic devices of CVD-made 2D MoS2 have been extensively investigated. In this review, we summarize extensive chemical vapor deposition methods such as thermal decomposition of (NH4)2MoS4, sulfurization of metal Mo or MoO3-x thin film, gas-phase synthesis of sulfur-based precursors and direct sulfurization of molybdenum foils. Then, the preparation of different 2D heterostructures has also been introduced. On the basis of preparing the 2D materials, we introduce in detail the research progress of MoS2-based transistors, photoelectric devices, flexible devices and related heterostructures. Finally, we analyze the research of two-dimensional materials with further applications in semiconductor devices.

Contents
1 Introduction
2 Basic character of 2D molybdenum disulfide
2.1 Crystal structure and band structure
2.2 Optical properties
3 Synthesis of 2D molybdenum disulfide via chemical vapor deposition
3.1 Thermal decomposition of (NH4)2MoS4
3.2 Sulfurization of metal Mo or MoO3-x thin films
3.3 Gas-phase synthesis of sulfur-based precursors
3.4 Direct sulfurization of molybdenum foils
3.5 Synthesis of 2D layered heterostructures
4 Application of 2D molybdenum disulfide in electric devices
4.1 Field effect transistors based on 2D MoS2
4.2 Photodetectors based on 2D MoS2
4.3 Flexible electronic devices
4.4 2D layered heterostructures devices
5 Conclusion

中图分类号: 

()
[1] Wilson J A, Yoffe A D. Adv. Phys., 1969, 18: 193.
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, KhotkevichV V, Morozov S V, Geim A K. Proc.Natl.Acad.Sci., 2005, 102: 10451.
[3] Kuc A, Zibouche N, Heine T. Phys. Rev. B, 2011, 83: 245213.
[4] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10: 1271.
[5] Xu X, Yao W, Xiao D, Heinz T F. Nat. Phys., 2014, 10: 343.
[6] Xiao D, Liu G B, Feng W, Xu X, Yao W. Phys. Rev. Lett., 2012, 108: 196802.
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D. Science, 2004, 306: 666.
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6: 147.
[9] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nat. Nanotechnol., 2013, 8: 497.
[10] Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T. Nano Lett., 2012, 12: 4013.
[11] Gao M R, Xu Y F, Jiang J,Yu S H. Chem. Soc. Rev., 2013, 42: 2986.
[12] Wang Q H, Kalantar-Zadeh K, Kis A, Colean J N, Strano M S. Nat. Nanotechnol., 2012, 7: 699.
[13] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105: 136805.
[14] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett., 2011, 11: 5111.
[15] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P. ACS Nano, 2013, 7: 7126.
[16] Mouri S, Miyauchi Y, Matsuda K. Nano Lett., 2013, 13: 5944.
[17] Verble J L, Wieting T J. Phys. Rev. Lett., 1970, 25: 362.
[18] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A. Adv. Funct. Mater., 2012, 22: 1385.
[19] Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. ACS Nano, 2010, 4: 2695.
[20] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B. Phys. Rev. B, 2013, 88: 121301.
[21] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Walker A R H, Xing H G. ACS Nano, 2014, 8: 986.
[22] Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H, Kis A. Nanotechnology, 2011, 22: 125706.
[23] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Gieveson E, M, Theuwissen K, Mccomb D W, Nellist P D, Nicolosi V. Science, 2011, 331: 568.
[24] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12: 1538.
[25] George A S, Mutlu Z, Ionescu R, Wu R J, Jeong J S, Bay H H, Chai Y, Mkhoyan K A, Ozkan M, Ozkan C S. Adv. Funct. Mater., 2014, 24: 7461.
[26] Yang J, Gu Y, Lee E, Lee H, Park S H, Cho M H, Kim Y H, Kim Y H, Kim H. Nanoscale, 2015, 7: 9311.
[27] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8: 966.
[28] Lee Y, Lee J, Bark H, Oh I K, Ryu G H, Lee Z, Kim H, Cho J H, Ahn J H, Lee C. Nanoscale, 2014, 6: 2821.
[29] Lin Y C, Zhang W, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J. Nanoscale, 2012, 4: 6637.
[30] Wang X, Feng H, Wu Y, Jiao L. J. Am. Chem. Soc., 2013, 135: 5304.
[31] Ji Q, Zhang Y, Zhang Y, Liu Z. Chem. Soc. Rev., 2015, 44: 2587.
[32] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24: 2320.
[33] Lee Y H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C T, Huang J K, Chang M T, Chang C S, Dresselhaus M, Palacios T, Li L J, Koog J. Nano Lett., 2013, 13: 1852.
[34] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S,Yakobson B I, Ideobo J C, Ajayan P M, Lou J. Nat. Mater., 2013, 12: 754.
[35] Van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Nat. Mater., 2013, 12: 554.
[36] Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Wu H, Sun X, Hu T, Guo W. Nanoscale, 2016, 8: 2234.
[37] Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L. ACS Nano, 2015, 9: 7450.
[38] Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L. Adv. Mater., 2014, 26: 2648.
[39] Wu S, Huang C, Aivazian G, Ross J S, Cobden D H, Xu X. ACS Nano, 2013, 7: 2768.
[40] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X. Nat. Nanotechnol., 2014, 9: 1024.
[41] Li H, Duan X, Wu X, Zhuang X, Zhou H, Zhang Q, Zhu X, Hu W, Ren P, Guo P, Ma L, Fan X, Wang X, Xu J, Pan A, Duan X. ACS Nano, 2014, 136: 3756.
[42] Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X. Nat. Mater., 2014, 13: 1096.
[43] Heo H, Sung J H, Jin G, Ahn J H, Kim K, Lee M J, Cha S, Choi H, Jo M H. Adv. Mater., 2015, 27: 3803.
[44] Yu J H, Lee H R, Hong S S, Kong D, Lee H W, Wang H, Xiong F, Wang S, Cui Y. Nano Lett., 2015, 15: 1031.
[45] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J, Sinclair R, Wu J. Nano Lett., 2014, 14: 3185.
[46] Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12: 2784.
[47] Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W, Wei K H, Li L J. Adv. Mater., 2013, 25: 756.
[48] Liu L, Kumar S B, Ouyang Y, Guo J. IEEE Trans. Electron Devices, 2011, 58: 3042.
[49] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. Nature, 2015, 520: 656.
[50] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y. Nano Lett., 2012, 12: 1136.
[51] Radisavljevic B, Whitwick M B, Kis A. ACS Nano, 2011, 5: 9934.
[52] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T. Nano Lett., 2012, 12: 4674.
[53] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S. Nano Lett., 2012, 12: 3695.
[54] Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C, Wu J. Nano Lett., 2013, 13: 2831.
[55] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M. Nano Lett., 2013, 13: 1416.
[56] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2011, 6: 74.
[57] Choi W, Cho M Y, Konar A, Lee J H, Cha G B, Hong S C, Kim S, Kim J, Jena D, Joo J, Sunkook K. Adv. Mater., 2012, 24: 5832.
[58] Lopez-Sanchez O, Alarcon Llado E, Koman V, Fontcuberta I M A, Radeovic A, Kis A. ACS Nano, 2014, 8: 3042.
[59] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320: 1308.
[60] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J. Sci. Rep., 2014, 4: 3826
[61] Bertolazzi S, Brivio J, Kis A. ACS Nano, 2011, 5: 9703.
[62] Lee J, Panzer M J, He Y, Lodge T P, Frisbie C D. ACS Nano, 2007, 129: 4532.
[63] Pu J, Zhang Y, Wada Y, Wang J T W, Li L J, Iwasa Y, Takenobu T. Appl. Phys. Lett., 2013, 103: 023505.
[64] Yoon J, Park W, Bae G Y, Kim Y, Jang H S, Hyun Y, Lim S K, Kahng Y H, Hong W K, Lee B H, Ko H C. Small, 2013, 9: 3295.
[65] Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D. ACS Nano, 2013, 7: 5446.
[66] Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J. ACS Nano, 2013, 7: 7931.
[67] Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X. Nat. Nanotechnol., 2013, 8: 952.
[68] Cui X, Lee G H, Kim Y D, Arefe G, Zhang X, Lee C H, Ye F, Watanabe K, Taniguchi T, Kim P, Hone J. Nat. Nanotechnol., 2015, 10: 534.
[69] Lee C H, Lee G H, van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P. Nat. Nanotechnol., 2014, 9: 676.
[70] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F. Nat. Nanotechnol., 2014, 9: 682.
[1] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[2] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[3] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[4] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[5] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[6] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[7] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[8] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[9] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[10] 朱文杰, 台国安, 王旭峰, 古其林, 伍增辉, 朱孔军. 二维原子晶体材料的制备与应变传感特性研究[J]. 化学进展, 2017, 29(11): 1285-1296.
[11] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[12] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.
[13] 朱伟钢, 甄永刚, 董焕丽, 付红兵, 胡文平. 有机共晶光电功能材料与器件[J]. 化学进展, 2014, 26(08): 1292-1306.
[14] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[15] 黄艳琴,范曲立,黄维. 水溶性共轭聚电解质*[J]. 化学进展, 2008, 20(04): 574-585.