English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1292-1306 DOI: 10.7536/PC140339 前一篇   后一篇

• 综述与评论 •

有机共晶光电功能材料与器件

朱伟钢1,2, 甄永刚*1, 董焕丽1, 付红兵1, 胡文平1   

  1. 1. 中国科学院化学研究所 北京 100190;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2014-03-01 修回日期:2014-05-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 甄永刚 E-mail:zhenyg@iccas.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2014CB643600,2013CB933500)、国家自然科学基金重点项目(No.51303185,51033006,91027043,91222203,91233205)和中国科学院先导专项(No.XDB12030300)资助

Organic Cocrystal Optoelectronic Materials and Devices

Zhu Weigang1,2, Zhen Yonggang*1, Dong Huanli1, Fu Hongbing1, Hu Wenping1   

  1. 1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-03-01 Revised:2014-05-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Basic Research Program of China(No.2014CB643600, 2013CB933500), the State Key Program of National Natural Science of China (No.51303185, 51033006, 91027043, 91222203, 91233205)and the Strategic Priority Research Program (No.XDB12030300)of the Chinese Academy of Sciences

在双组分或多组分有机共晶中,特殊的分子堆积方式和聚集态结构以及不同组分之间的协同和集合效应,使得有机共晶不仅保留了单一组分的固有属性,而且展现出更多新颖的宏观光电性质,在电导、铁电、双极性电荷传输、光响应、发光和给受体组分间电荷转移过程等方面具有重要的研究价值和应用前景,为有机单晶器件的高性能化和多功能化发展提供了新途径。因此,有机共晶的制备和性能研究逐渐成为近年来的热点。在本文中我们首先详细地介绍了有机共晶的分类情况,根据形成晶体的作用力分为电荷转移晶体、通过π-π相互作用形成的晶体和以分子间氢键、卤键相互作用为主的晶体;其次,以经典的7,7,8,8-四氰基对苯二醌二甲烷(TCNQ)、1,2,4,5-苯四甲腈(TCNB)和富勒烯(C60)三种典型的受体分子为例,列举了常见的有机给受体材料;再次,介绍了8种制备有机共晶的常用方法,讨论了有机共晶中分子排布方式对性能的影响;最后,介绍了有机共晶在光电器件中的应用。我们相信有机共晶的理论和应用研究会进一步丰富和推动有机晶体材料和光电子学领域的发展。

Compared with one-component organic single crystals, organic cocrystals with unique packing structures and aggregate states show a variety of novel optoelectronic properties through multi-component synergistic and collective effects, paving the way to the development of high-performance or multifunctional optoelectronic devices, particularly in electrical conductors, ferroelectricity, ambipolar charge transporting, photoconductivity and luminescence. Moreover, the charge transfer pathway between donor (D) and acceptor (A) in organic cocrystal is also fundamentally interesting. Therefore, studies on organic cocrystals have gained much attentions in recent years. In this paper, firstly, we have classified organic cocrystals into three categories by the driving forces: charge transfer (CT), π-π interaction and halogen/hydrogen bond; secondly, we have introduced common organic donor materials, using 7,7,8,8-tetracyanoquinodimethane (TCNQ), 1,2,4,5-tetracyanobenzene (TCNB) and fullerene (C60) as the typical acceptors; Thirdly, we have listed eight popular methods used to prepare these organic cocrystals and discussed the relationship between molecule packing and performance of organic cocrystal; Finally, we have covered the applications of these novel cocrystals in organic optoelectronics. We believe that the study on the organic cocrystals is an effective way to achieve organic multi-functional single crystal materials and devices and to promote the development of organic solid state optoelectronics.

Contents
1 Introduction
2 Classification of organic cocrystals
2.1 Charge transfer complex crystals
2.2 Crystals formed by π-π interactions
2.3 Crystals formed by halogen and hydrogen bonds
2.4 Other crystals
3 Common donor/acceptor materials
3.1 TCNQ and its derivatives as acceptor
3.2 TCNB as acceptor
3.3 C60 as acceptor
4 Methods for preparation of crystals
4.1 Solution methods
4.2 Vapor phase method
4.3 Mechanochemical preparation
5 Relationship between molecular packing and function
6 Applications of organic cocrystals
6.1 Unipolar field effect transistors
6.2 Ambipolar field effect transistors
6.3 Photoresponse devices
6.4 Luminescent materials
6.5 Ambipolar field-effect and solid emitting crystals
6.6 Ferroelectric crystals
7 Conclusion and outlook

中图分类号: 

()

[1] Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem. Rev., 2011, 112: 2208.
[2] Hains A W, Liang Z Q, Woodhouse M A, Gregg B A. Chem. Rev., 2010, 110: 6689.
[3] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913.
[4] Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett., 2007, 90: 102120.
[5] Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, Smith P, de Leeuw D. Nat. Mater., 2005, 4: 601.
[6] Li R J, Hu W P, Liu Y Q, Zhu D B. Acc. Chem. Res., 2010, 43: 529.
[7] Briseno A L, Mannsfeld S C B, Reese C, Hancock J M, Xiong Y J, Jenekhe S A, Bao Z N, Xia Y N. Nano Lett., 2007, 7: 2847.
[8] Jiang H, Zhao H P, Zhang K K, Chen X D, Kloc C, Hu W P. Adv. Mater., 2011, 23: 5075.
[9] Dadvand A, Moiseev A G, Sawabe K, Sun W H, Djukic B, Chung I, Takenobu T, Rosei F, Perepichka D F. Angew. Chem. Int. Ed., 2012, 51: 3837.
[10] Bisri S Z, Takenobu T, Yomogida Y, Shimotani H, Yamao T, Hotta S, Iwasa Y. Adv. Funct. Mater., 2009, 19: 1728.
[11] Bisri S Z, Sawabe K, Imakawa M, Maruyama K, Yamao T, Hotta S, Iwasa Y, Takenobu T. Sci. Rep., 2012, 2: 1.
[12] Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q, Yao J N. Acc. Chem. Res., 2009, 43: 409.
[13] Zheng J Y, Yan Y L, Wang X P, Zhao Y S, Huang J X, Yao J N. J. Am. Chem. Soc., 2012, 134: 2880.
[14] Xu Z Z, Liao Q, Shi Q, Zhang H L, Yao J N, Fu H B. Adv. Mater., 2012, 24: OP216.
[15] Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M. Adv. Mater., 2007, 19: 688.
[16] Kabe R, Nakanotani H, Sakanoue T, Yahiro M, Adachi C. Adv. Mater., 2009, 21: 4034.
[17] Nakanotani H, Saito M, Nakamura H, Adachi C. Appl. Phys. Lett., 2009, 95: 033308.
[18] Aakeroy C B, Salmon D J. CrystEngComm, 2005, 7: 439.
[19] Desiraju G R. CrystEngComm, 2003, 5: 466.
[20] Dunitz J D. CrystEngComm, 2003, 5: 506.
[21] Zhang J, Geng H, Virk T S, Zhao Y, Tan J H, Di C A, Xu W, Singh K, Hu W P, Shuai Z G, Liu Y Q, Zhu D B. Adv. Mater., 2012, 24: 2603.
[22] Zhang J, Tan J H, Ma Z Y, Xu W, Zhao G Y, Geng H, Di C A, Hu W P, Shuai Z G, Singh K, Zhu D B. J. Am. Chem. Soc., 2012, 135: 558.
[23] Ferraris J, Cowan D O, Walatka V, Perlstein J H. J. Am. Chem. Soc., 1973, 95: 948.
[24] Canevet D, Pérez E M, Martín N. Angew. Chem. Int. Ed., 2011, 50: 9248.
[25] Yan D, Delori A, Lloyd G O, Friš?i D?T, Day G M, Jones W, Lu J, Wei M, Evans D G, Duan X. Angew. Chem. Int. Ed., 2011, 50: 12483.
[26] Stojakovi D?J, Whitis A M, MacGillivray L R. Angew. Chem. Int. Ed., 2013, 52: 12127.
[27] Bosshard C, Pan F, Wong M S, Manetta S, Spreiter R, Cai C, Günter P, Gramlich V. Chem. Phys., 1999, 245: 377.
[28] Harris K D M, Stainton N M, Callan A M, Howie R A. J. Mater. Chem., 1993, 3: 947.
[29] Kumaresan S, Seethalakshmi P G, Kumaradhas P, Devipriya B. J. Mol. Struct., 2013, 1032: 169.
[30] Gagnière E, Mangin D, Puel F, Rivoire A, Monnier O, Garcia E, Klein J P. J. Cryst. Growth, 2009, 311: 2689.
[31] Lee S C, Ueda A, Kamo H, Takahashi K, Uruichi M, Yamamoto K, Yakushi K, Nakao A, Kumai R, Kobayashi K, Nakao H, Murakami Y, Mori H. Chem. Commun., 2012, 48: 8673.
[32] Boyineni A, Jayanty S, Pallepogu R. J. Cryst. Growth, 2013, 380: 241.
[33] Menard E, Podzorov V, Hur S H, Gaur A, Gershenson M E, Rogers J A. Adv. Mater., 2004, 16: 2097.
[34] Jiang H, Yang X J, Cui Z D, Liu Y C, Li H X, Hu W P. Appl. Phys. Lett., 2009, 94: 123308.
[35] Sakai M, Sakuma H, Ito Y, Saito A, Nakamura M, Kudo K. Phys. Rev. B, 2007, 76: 045111.
[36] Olmstead M M, Bettencourt-Dias A D, Lee H M, Pham D, Balch A L. Dalton Trans., 2003, 3227.
[37] Brook D J R, Koch T H. J. Mater. Chem., 1997, 7: 2381.
[38] Li J, Xiong Y, Wu Q H, Wang S T, Gao X K, Li H X. Eur. J. Org. Chem., 2012, 2012: 6136.
[39] Miller J S. Angew. Chem. Int. Ed., 2006, 45: 2508.
[40] Iwata S, Tanaka J, Nagakura S. J. Am. Chem. Soc., 1966, 88: 894.
[41] Reinheimer E, Zhao H H, Dunbar K. J. Chem. Crystallogr., 2010, 40: 514.
[42] Dillon R J, Bardeen C J. J. Phys. Chem. A, 2011, 115: 1627.
[43] Izuoka A, Tachikawa T, Sugawara T, Suzuki Y, Konno M, Saito Y, Shinohara H. J. Chem. Soc. Chem. Commun., 1992, 1472.
[44] Wakahara T, D’Angelo P, Miyazawa K, Nemoto Y, Ito O, Tanigaki N, Bradley D D C, Anthopoulos T D. J. Am. Chem. Soc., 2012, 134: 7204.
[45] Konarev D V, Lyubovskaya R N, Drichko N Y V, Yudanova E I, Shulga Y M, Litvinov A L, Semkin V N, Tarasov B P. J. Mater. Chem., 2000, 10: 803.
[46] Douthwaite R E, Green M L H, Heyes S J, Rosseinsky M J, Turner J F C. J. Chem. Soc. Chem. Commun., 1994, 1367.
[47] Ito Y, Virkar A A, Mannsfeld S, Oh J H, Toney M, Locklin J, Bao Z N. J. Am. Chem. Soc., 2009, 131: 9396.
[48] Wakahara T, Sathish M, Miyazawa K, Hu C P, Tateyama Y, Nemoto Y, Sasaki T, Ito O. J. Am. Chem. Soc., 2009, 131: 9940.
[49] Lei Y L, Jin Y, Zhou D Y, Gu W, Shi X B, Liao L S, Lee S T. Adv. Mater., 2012, 24: 5345.
[50] Liu C, Minari T, Lu X, Kumatani A, Takimiya K, Tsukagoshi K. Adv. Mater., 2011, 23: 523.
[51] Park S K, Varghese S, Kim J H, Yoon S J, Kwon O K, An B K, Gierschner J, Park S Y. J. Am. Chem. Soc., 2013, 135: 4757.
[52] Tremblay N J, Gorodetsky A A, Cox M P, Schiros T, Kim B, Steiner R, Bullard Z, Sattler A, So W Y, Itoh Y, Toney M F, Ogasawara H, Ramirez A P, Kymissis I, Steigerwald M L, Nuckolls C. Chem Phys Chem, 2010, 11: 799.
[53] Black H T, Perepichka D F. Angew. Chem. Int. Ed., 2014, 53: 2138.
[54] Braga D, Maini L, Grepioni F. Chem. Soc. Rev., 2013, 42: 7638.
[55] Friš?i D?T, Jones W. Cryst. Growth Des., 2009, 9: 1621.
[56] Bechgaard K, Kistenmacher T J, Bloch A N, Cowan D O. Acta Crystallogr. B, 1977, 33: 417.
[57] Pope M. Electronic Processes in Organic Crystals and Polymers. 2nd ed. Oxford: Oxford University Press, 1999.
[58] Rao K V, Jayaramulu K, Maji T K, George S J. Angew. Chem. Int. Ed., 2010, 49: 4218.
[59] Sagade A A, Rao K V, Mogera U, George S J, Datta A, Kulkarni G U. Adv. Mater., 2013, 25: 559.
[60] Sato S, Nikawa H, Seki S, Wang L, Luo G F, Lu J, Haranaka M, Tsuchiya T, Nagase S, Akasaka T. Angew. Chem. Int. Ed., 2012, 51: 1589.
[61] Kobayashi H, Nakayama J. Bull. Chem. Soc. Jpn., 1981, 54: 2408.
[62] Zhu L Y, Yi Y P, Li Y, Kim E G, Coropceanu V, Brédas J L. J. Am. Chem. Soc., 2012, 134: 2340.
[63] Wu H D, Wang F X, Xiao Y, Pan G B. J. Mater. Chem. C, 2013, 1: 2286.
[64] Wei L, Yao J N, Fu H B. ACS Nano, 2013, 7: 7573.
[65] Yu W, Wang X Y, Li J, Li Z T, Yan Y K, Wang W, Pei J. Chem. Commun., 2013, 49: 54.
[66] Wu H D, Wang F X, Xiao Y, Pan G B. J. Mater. Chem. C, 2014, 2: 2328.
[67] Lei Y L, Liao L S, Lee S T. J. Am. Chem. Soc., 2013, 135: 3744.
[68] Horiuchi S, Ishii F, Kumai R, Okimoto Y, Tachibana H, Nagaosa N, Tokura Y. Nat. Mater., 2005, 4: 163.
[69] Horiuchi S, Hasegawa T, Tokura Y. J. Phys. Soc. Jpn., 2006, 75: 051016.

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[3] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[4] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[5] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[6] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[7] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[8] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[9] 曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件[J]. 化学进展, 2016, 28(4): 459-470.
[10] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[11] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.
[12] 高缘 祖卉 张建军. 药物共晶研究进展*[J]. 化学进展, 2010, 22(05): 829-836.
[13] 刘洁 江浪 胡文平. 蒽及其衍生物在有机场效应晶体管中的应用[J]. 化学进展, 2009, 21(12): 2568-2577.
[14] 陈振宇,叶腾凌,马东阁. 有机半导体中载流子迁移率的测量方法*[J]. 化学进展, 2009, 21(05): 940-947.
[15] 黄艳琴,范曲立,黄维. 水溶性共轭聚电解质*[J]. 化学进展, 2008, 20(04): 574-585.
阅读次数
全文


摘要

有机共晶光电功能材料与器件