English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 797-808 DOI: 10.7536/PC171022 前一篇   后一篇

所属专题: 电化学有机合成

• 综述 •

赭曲霉毒素A的电化学适体传感检测

单艳群, 王晓英*   

  1. 东南大学公共卫生学院 环境医学工程教育部重点实验室 南京 210009
  • 收稿日期:2017-10-23 修回日期:2017-12-20 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 王晓英,e-mail:wxy@seu.edu.cn E-mail:wxy@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.81302472)资助

Electrochemical Aptasensor for Detection of Ochratoxin A

Yanqun Shan, Xiaoying Wang*   

  1. Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
  • Received:2017-10-23 Revised:2017-12-20 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81302472).
赭曲霉毒素A (OTA)是一类主要由曲霉属和青霉属等真菌产生的小分子有毒次级代谢产物,广泛存在于食品、农产品和动物饲料中,具有强烈肝毒性、肾毒性、致畸和致突变等作用,亦是ⅡB类致癌物。鉴于OTA污染的普遍性和危害性,本文就目前OTA的常用检测方法进行概述和比较,重点阐述新型电化学适体传感技术在OTA检测方面的相关应用。全面综述了构型变换型、亲合型以及混合型OTA电化学适体传感器的原理、优缺点及最新研究进展,并对OTA电化学适体传感器的未来发展方向提出展望,为电化学适体传感器的深入研究与应用提供参考。
Ochratoxin A (OTA) is a toxic secondary metabolite of small molecular weight mainly produced by Aspergillus and Penicillium species, which are widely found in food, agricultural products and animal feed. It has strong hepatotoxicity, nephrotoxicity, teratogenic and mutagenic effects, and is also a class ⅡB carcinogens. In view of OTA's universality and harmfulness, the present situation of the commonly used detection methods of OTA is summarized and compared in this paper. Specifically, the application of new electrochemical aptasensor in OTA detection is mainly described. OTA electrochemical aptasensors are divided into three categories:configuration transformation type, affinity type and hybrid type. Their respective principles, characteristics and the latest research progress are discussed in detail. Furthermore, the summary of the future directions and the potential applications are given, which provides reference for the further research and application of OTA.
Contents
1 Introduction
2 Traditional detection technology of OTA
3 Electrochemical aptasensor for OTA
3.1 Configuration conversion type electrochemical aptasensor
3.2 Affinity electrochemical aptasensor
3.3 Hybrid type electrochemical aptasensor
4 Conclusion and outlook

中图分类号: 

()
[1] Fromme H, Gareis M, Völkel W, Gottschalk C. Int. J. Hyg.Environ. Health, 2016, 219(2):143.
[2] De Ruyck K, de Boevre M, Huybrechts I, de Saeger S. Mutat Res., Rev. Mutat. Res., 2015, 766:32.
[3] Chauhan R, Singh J, SachdevT, Basu T, Malhotra B D. Biosens. Bioelectron., 2016, 81(Supplement C):532.
[4] Clarke R, Connolly L, Frizzell C, Elliott C T. Toxicol. Lett., 2015, 238(1):54.
[5] Flores-Flores M E, Lizarraga E, López de Cerain A, González-Peñas E. Food Control, 2015, 53(Supplement C):163.
[6] Cagnazzo C, Campora S, Ferretti E, Arizio F, Marchesi E. Journal of Thoracic Oncology, 2017, 12(1):S1441.
[7] Commission Regulation (EU) No. 594/2012 of 5 July 2012 Amending Regulation (EC) 1881/2006 as Regards the Maximum Levels of the Contaminants Ochratoxin A, Non Dioxin-Like PCBs and Melamine in Foodstuffs.
[8] GB 2761-2017食品中真菌毒素限量. 中华人民共和国国家标准.(GB 2761-2017, Limit of mycotoxins in foods. NationalStandards of the People's Republic of China)
[9] Europeancommission. Commission Recommendation 2006/576/EC on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding.2006-08-17.
[10] GB 13078.2-2006饲料卫生标准:饲料中赭曲霉毒素A和玉米赤霉烯酮的允许量. 中华人民共和国国家标准.(GB 13078.2-2006, Feed Hygiene Standards:Allowable Amounts of Ochratoxin A and Zearalenone in feed. Standards of the People's Republic of China)
[11] Teixeira T R, Hoeltz M, Einloft T C, Dottori H A,Manfroi V, Noll I B. Food Addit. Contam. Part B, 2011, 4(4):289.
[12] Andrade M A, Lancas F M. J. Chromatogr. A, 2017, 1493:41.
[13] Giacomo L, Michele V, Guido F, Danilo M, Luigi I, Valentina M. MethodsX, 2016, 3:171.
[14] Zhang Y, Wang L, Shen X, Wei X, Huang X, Liu Y, Sun X, Wang Z, Sun Y, Xu Z. J. Agric. Food Chem., 2017, 65(23):4830.
[15] Zhang M, Yan L, Huang Q, Bu T, Yu S, Zhao X, Wang J, Zhang D. Food Control, 2018, 84(Supplement C):215.
[16] Xu J, Li W, Liu R, Yang Y, Lin Q X, Xu J J, Shen P, Zheng Q, Zhang Y, Han Z F, Li J L, Zheng T S. Sens. Actuators B, 2016, 232:577.
[17] Karczmarczyk A, Haupt K, Feller K H. Talanta, 2017, 166(Supplement C):193.
[18] Liang Y, Huang X, Yu R, Zhou Y, Xiong Y. Anal. Chim. Acta, 2016, 936:195.
[19] Crivianu-Gaita V, Thompson M. Biosens. Bioelectron.,2016, 85:32.
[20] Wang X Y, Dong P, Yun W, Xu Y, He P G, Fang Y Z. Biosens. Bioelectron., 2009, 24(11):3288.
[21] Wang X Y, Dong P, He P G, Fang Y Z. Anal. Chim. Acta, 2010(658):128.
[22] Citartan M, Gopinath S C, Tominaga J, Tan S C, Tang T H. Biosens. Bioelectron., 2012, 34(1):1.
[23] Ruscito A, Smith M, Goudreau D N, DeRosa M C. J. AOAC Int., 2016, 99(4):865.
[24] Cruz-Aguado J A, Penner G.J. Agric. Food Chem., 2008, 56(22):10456.
[25] Barthelmebs L, Jonca J, Hayat A. Food Control, 2011, 22(5):737.
[26] McKeague M, Velu R, Hill K, Bardoczy V, Meszaros T, de Rosa M C. Toxins, 2014,6(8):2435.
[27] Ha T H. Toxins, 2015, 7(12):5276.
[28] Alam A U, Qin Y, Howlader M M R, Hu N X, Deen M J.Sens. Actuators B, 2018, 254(Supplement C):896.
[29] Rapini R, Marrazza G. Bioelectrochemistry, 2017, 118(Supplement C):47.
[30] Catanante G, Mishra R K, Hayat A, Marty J L. Talanta, 2016, 153:138.
[31] Cheng L, Qu H, Teng J, Yao L, Xue F, Chen W. Food Science and Human Wellness, 2017, 6(2):70.
[32] Tong P, Zhang L, Xu J J, Chen H Y. Biosens. Bioelectron., 2011, 29(1):97.
[33] Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W. Anal. Chim. Acta, 2012, 753:27.
[34] Prieto-Simon B, Samitier J. Anal. Chem., 2014, 86:1437.
[35] Wang C, Qian J, An K, Huang X, Zhao L, Liu Q, Hao N Z Q,Wang K. Biosens. Bioelectron., 2017, 89(Part 2):802.
[36] Sun A L, Zhang Y F, Sun G P, Wang X N, Tang D. Biosens. Bioelectron., 2017, 89(Part 1):659.
[37] Zhang J, Chen J, Zhang X, Zeng Z, Chen M, Wang S. Electrochem. Commun., 2012, 25:5.
[38] Xie S, Chai Y, Yuan Y, Bai L, Yuan R.Biosens. Bioelectron., 2014, 55:324.
[39] Tong P, Zhao W W, Zhang L, Xu J J, Chen H Y.Biosens. Bioelectron., 2012, 33(1):146.
[40] Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju S B, Chen W. Anal. Chem., 2013, 85(22):10842.
[41] Loo A H, Bonanni A, Pumera M. ChemElectroChem, 2015, 2(5):743.
[42] Castillo G, Lamberti I, Mosiello L, Hianik T. Electroanalysis, 2012, 24(3):512.
[43] Evtugyn G, Porfireva A, Sitdikov R, Evtugyn V, Stoikov I, Antipin I, Hianik T. Electroanalysis, 2013, 25(8):1847.
[44] Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Evtugyn V, Hianik T. Sensors, 2013, 13(12):16129.
[45] Qian J, Jiang L, Yang X, Yan Y, Mao H, Wang K. Analyst, 2014, 139(21):5587.
[46] Prabhakar N, Matharu Z, Malhotra B D.Biosens. Bioelectron.,2011, 26(10):4006.
[47] Wei M, Zhang W Y. RSC Adv., 2017, 7(46):28655.
[48] Mishra R K, Hayat A, Catanante G, Ocaña C, Marty J L. Anal. Chim. Acta, 2015, 889:106.
[49] Rivas L, Mayorga-Martinez C C, Quesada-Gonzalez D, Zamora-Galvez A, de la Escosura-Muniz A, Merkoci A. Anal. Chem., 2015, 87(10):5167.
[50] Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty J L, Korri-Youssoufi H. Anal. Chim. Acta, 2016, 920:37.
[51] Hayat A, Andreescu S, Marty J L.Biosens. Bioelectron., 2013, 45:168.
[52] Chrouda A, Sbartai A, Baraket A, Renaud L, Maaref A, Jaffrezic-Renault N. Anal. Biochem., 2015, 488(Supplement C):36.
[53] Hayat A, Sassolas A, Marty J L, Radi A E. Talanta, 2013, 103:14.
[54] Barthelmebs L, Hayat A, Limiadi A W, Marty J L, Noguer T.Sens. Actuators B, 2011, 156(2):932.
[55] Bonel L, Vidal J C, Duato P, Castillo J R.Biosens. Bioelectron., 2011, 26(7):3254.
[56] Mishra R K, Hayat A, Catanante G, Istamboulie G, Marty J L. Food Chem., 2016, 192:799.
[57] Rhouati A, Hayat A, Hernandez D B, Meraihi Z, Munoz R,Marty J L.Sens. Actuators B, 2013, 176:1160.
[58] Bulbul G, Hayat A, Andreescu S. Nanoscale, 2015, 7(31):13230.
[59] Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J. Microchim. Acta, 2017, 184(3):863.
[60] Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S.Biosens. Bioelectron., 2010, 26(2):710.
[61] Jiang L, Qian J, Yang X, Yan Y, Liu Q, Wang K, Wang K. Anal. Chim. Acta, 2014, 806(Supplement C):128.
[62] Yang X, Qian J, Jiang L, YanY, Wang K, Liu Q, Wang K. Bioelectrochemistry, 2014, 96:7.
[63] Huang K J, Shuai H L, Chen Y X. Sens. Actuators B, 2016, 225(Supplement C):391.
[64] Hao N, Jiang L, Qian J, Wang K.J. Electroanal. Chem., 2016, 781:332.
[65] Abnous K, Danesh N M, Alibolandi M. Microchim. Acta, 2017, 184(4):1151.
[66] Tan Y, Wei X F, Zhang Y, Wang P L, Qiu B, Guo L H, Lin Z Y, Yang H H. Anal. Chem., 2015, 87(23):11826.
[67] Liu C, Guo Y, Luo F, Rao P, Fu C, Wang S. Food Analytical Methods, 2017, 10(6):1982.
[1] 蒋艳, 马翠翠, 胡贤巧, 何巧红. 微流控纸芯片的加工技术及其应用[J]. 化学进展, 2014, 26(01): 167-177.
[2] 田宇, 朱才镇, 龚静华, 马敬红, 杨曙光, 徐坚. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10): 1751-1762.
[3] 梁淼, 刘锐, 苏荣欣*, 齐崴, 王利兵*, 何志敏. 面向食品安全分析的核酸适配体传感技术[J]. 化学进展, 2012, 24(07): 1378-1387.
[4] 王国庆 陈兆鹏 陈令新. 基于核酸适配体和纳米粒子的光学探针*[J]. 化学进展, 2010, 22(0203): 489-499.
[5] 屈锋,刘允,任肖敏,赵新颖,张经华. 毛细管电泳在核酸适配体研究及核酸适配体筛选中的应用*[J]. 化学进展, 2009, 21(0708): 1576-1582.
[6] 李瑞萍,张艺,黄应平. 环境样品中四环素类抗生素的检测技术*[J]. 化学进展, 2008, 20(12): 2075-2082.
[7] 薛震,邱波,林广欣,赖丛芳,罗海. 解吸电喷雾电离技术*[J]. 化学进展, 2008, 20(04): 594-601.
[8] 谢海燕,陈薛钗,邓玉林. 核酸适配体及其在化学领域的相关应用*[J]. 化学进展, 2007, 19(06): 1026-1033.