English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 167-177 DOI: 10.7536/PC130616 前一篇   后一篇

• 综述与评论 •

微流控纸芯片的加工技术及其应用

蒋艳, 马翠翠, 胡贤巧, 何巧红*   

  1. 浙江大学化学系 微分析系统研究所 杭州 310058
  • 收稿日期:2013-06-01 修回日期:2013-10-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 何巧红,e-mail:heqh@zju.edu.cn E-mail:heqh@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20890020)和国家科学技术支撑项目(No.2012BAI13B06)资助

Fabrication Techniques of Microfluidic Paper-Based Chips and Their Applications

Jiang Yan, Ma Cuicui, Hu Xianqiao, He Qiaohong*   

  1. Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
  • Received:2013-06-01 Revised:2013-10-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 20890020) and the National Key Technology R&D Program of China (No. 2012BAI13B06)

微流控纸芯片是一种新兴的微流控分析技术平台,具有成本低、加工简易、使用和携带方便等优点,在临床诊断、食品质量控制和环境监测等应用领域具有很大的应用前景,近年来,引起广大科学工作者极大的兴趣。本文着重介绍目前文献相继报道的各种纸芯片加工技术,包括紫外光刻、蜡印、等离子体处理、喷墨打印、喷墨溶剂刻蚀、绘图、柔印和激光光刻等技术。此外,还介绍了微流控纸芯片分析中的检测方法及其应用。

Microfluidic paper-based chip analysis is a burgeoning microfluidic technique. It possesses great potentials for application in clinical diagnosis, food quality control as well as environmental monitoring due to its attractive features such as low-cost, easy-to-fabricate, easy-to-use and portable.Its importance and utility are widely acknowledged and extensive research has been conducted in the past several years. This paper mainly aims to review the developed techniques for fabrication of microfluidic paper-based chips, including UV photolithography, wax printing, plasma treatment, ink printing, ink jet etching, plotting, screen printing, flexography printing and laser treatment, and so on. The detection methods for the microfluidic paper-based chip analysis and applications of microfluidic paper-based chips are also reviewed.

Contents
1 Introduction
2 Paper choices
3 Fabrication techniques of microfluidic paper-based chips
3.1 UV photolithography technique
3.2 Wax printing technique
3.3 Plasma treatment technique
3.4 Ink printing technique
3.5 Ink jet etching technique
3.6 Plotting technique
3.7 Screen printing and flexography printing technique
3.8 Wax dipping technique
3.9 Laser treatment technique
3.10 Other techniques
4 Detection methods in microfluidic paper-based analytical devices
4.1 Colorimetric detection
4.2 Electrochemical detection
4.3 Chemiluminescence and electrochemilumine-scence detection
5 Applications of microfluidic paper-based analytical devices
5.1 Clinical diagnosis
5.2 Food quality control
5.3 Environmental monitoring
6 Conclusion and perspective

中图分类号: 

()

[1] Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Ed., 2007, 46: 1318.
[2] Haller P D, Flowers C A, Gupta M. Soft Matter, 2011, 7: 2428.
[3] He Q H, Ma C C, Hu X Q, Chen H W. Anal. Chem., 2013, 85: 1327.
[4] Lu Y, Shi W W, Qin J H, Lin B C. Anal. Chem., 2010, 82: 329.
[5] Lu Y, Shi W W, Jiang L, Qin J H, Lin B C. Electrophoresis, 2009, 30: 1497.
[6] Carrilho E, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81: 7091.
[7] Li X, Tian J F, Garnier G, Shen W. Colloid Surf. B: Biointerfaces, 2010, 76: 564.
[8] Bruzewicz D A, Reches M, Whitesides G M. Anal. Chem., 2008, 80: 3387.
[9] Nie J F, Zhang Y, Lin L W, Zhou C B, Li S H, Zhang L M, Li J P. Anal. Chem., 2012, 84: 6331.
[10] Liu H, Crooks R M. J. Am. Chem. Soc., 2011, 133: 17564.
[11] Martinez A W, Phillips S T, Whitesides G M. PNAS, 2008, 105: 19606.
[12] Cheng C M, Martinez A W, Gong J L, Mace C R, Phillips S T, Carrilho E, Mirica K A, Whitesides G M. Angew. Chem. Int. Ed., 2010, 49: 4771.
[13] Cretich M, Sedini V, Damin F, Pelliccia M, Sola L, Chiari M. Anal. Biochem., 2010, 397: 84.
[14] Li X, Ballerini D R, Shen W. Biomicrofluidics, 2012, 6: 011301.
[15] Liana D D, Raguse B, Gooding J J, Chow E. Sensors, 2012, 12: 11505.
[16] Ballerini D R, Li X, Shen W. Microfluid. Nanofluid., 2012, 13: 769.
[17] Yang X X, Forouzan O, Brown T P, Shevkoplyas S S. Lab Chip, 2012, 12: 274.
[18] Al-Tamimi M, Shen W, Zeineddine R, Tran H, Garnier G. Anal. Chem., 2012, 84: 1661.
[19] Klasner S A, Price A K, Hoeman K W, Wilson R S, Bell K J, Culbertson C T. Anal. Bioanal. Chem., 2010, 397: 1821.
[20] Martinez A W, Phillips S T, Nie Z H, Cheng C M, Carrilho E, Wiley B J, Whitesides G M. Lab Chip, 2010, 10: 2499.
[21] Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81: 5990.
[22] Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80: 3699.
[23] Martinez A W, Phillips S T, Wiley B J, Gupta M, Whitesides G M. Lab Chip, 2008, 8: 2146.
[24] Rezk A R, Qi A S, Friend J R, Li W H, Yeo L Y. Lab Chip, 2012, 12: 773.
[25] Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry C S, Chailapakul O. Anal. Chem., 2010, 82: 1727.
[26] Dungchai W, Chailapakul O, Henry C S. Anal. Chem., 2009, 81: 5821.
[27] Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35: 363.
[28] Pardasani D, Tak V, Purohit A K, Dubey D K. Analyst, 2012, 137: 5648.
[29] Carvalhal R F, Kfouri M S, Piazetta M H D, Gobbi A L, Kubota L T. Anal. Chem., 2010, 82: 1162.
[30] Martinez A W, Phillips S T, Carrilho E, Whitesides G M. Anal. Chem., 2010, 82: 3.
[31] Zhang M, Ge L, Ge S G, Yan M, Yu J H, Huang J D, Liu S. Biosens. Bioelectron., 2013, 41: 544.
[32] Ge L, Yan J X, Song X R, Yan M, Ge S G, Yu J H. Biomaterials, 2012, 33: 1024.
[33] Jokerst J C, Adkins J A, Bisha B, Mentele M M, Goodridge L D, Henry C S. Anal. Chem., 2012, 84: 2900.
[34] Hossain S M Z, Brennan J D. Anal. Chem., 2011, 83: 8772.
[35] Vella S J, Beattie P, Cademartiri R, Laromaine A, Martinez A W, Phillips S T, Mirica K A, Whitesides G M. Anal. Chem., 2012, 84: 2883.
[36] Yan J X, Ge L, Song X R, Yan M, Ge S G, Yu J H. Chem. Eur. J., 2012, 18: 4938.
[37] Zang D J, Ge L, Yan M, Song X R, Yu J H. Chem. Commun., 2012, 48: 4683.
[38] Li W P, Ge S G, Wang S M, Yan M, Ge L, Yu J H. Luminescence, 2013, 28: 496.
[39] Wang P P, Ge L, Yan M, Song X R, Ge S G, Yu J H. Biosens. Bioelectron, 2012, 32: 238.
[40] Mentele M M, Cunningham J, Koehler K, Volckens J, Henry C S. Anal. Chem., 2012, 84: 4474.
[41] Ge S G, Ge L, Yan M, Song X R, Yu J H, Huang J D. Chem. Commun., 2012, 48: 9397.
[42] Zhong Z W, Wang Z P, Huang G X D. Microsyst. Technol., 2012, 18: 649.
[43] Shiroma L Y, Santhiago M, Gobbi A L, Kubota L T. Anal. Chim. Acta, 2012, 725: 44.
[44] Wang S W, Ge L, Zhang Y, Song X R, Li N Q, Ge S G, Yu J H. Lab Chip, 2012, 12: 4489.
[45] Lu J J, Ge S G, Ge L, Yan M, Yu J H. Electrochim. Acta, 2012, 80: 334.
[46] Pollock N R, Rolland J P, Kumar S, Beattie P D, Jain S, Noubary F, Wong V L, Pohlmann R A, Ryan U S, Whitesides G M. Sci. Transl. Med., 2012, 4: 1.
[47] Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12: 3150.
[48] Nie Z H, Deiss F, Liu X Y, Akbulut O, Whitesides G M. Lab Chip, 2010, 10: 3163.
[49] Li X, Tian J F, Shen W. Cellulose, 2010, 17: 649.
[50] Li X, Tian J F, Nguyen T, Shen W. Anal. Chem., 2008, 80: 9131.
[51] Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83: 1300.
[52] Abe K, Koter K, Suzuki K, Citterio D. Anal. Bioanal. Chem, 2010, 398: 885.
[53] Abe K, Suzuki K, Citterio D. Anal. Chem., 2008, 80: 6928.
[54] Dungchai W, Chailapakul O, Henry C S. Analyst, 2011, 136: 77.
[55] Olkkonen J, Lehtinen K, Erho T. Anal. Chem., 2010, 82: 10246.
[56] Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J. Sens. Actuators B: Chem., 2011, 160: 1404.
[57] Chitnis G, Ding Z W, Chang C L, Savran C A, Ziaie B. Lab Chip, 2011, 11: 1161.
[58] Songjaroena T, Dungchai W, Chailapakul O, Laiwattanapaisal W. Talanta, 2011, 85: 2587.
[59] Songjaroen T, Dungchai W, Chailapakul O, Henry C S, Laiwattanapaisal W. Lab Chip, 2012, 12: 3392.
[60] Sugimura H, Ushiyama K, Hozumi A, Takai O. Langmuir, 2000, 16: 885.
[61] Bai Z Q, He Q H, Huang S S, Hu X Q, Chen H W. Anal. Chim. Acta, 2013, 767: 97.
[62] Zhang A L, Zha Y. AIP Advances, 2012, 2: 022171.
[63] 白鹏(Bai P), 罗雁(Luo Y), 李英(Li Y), 余晓东(Yu X D), 陈洪渊(Chen H Y). 分析化学 (Chinese J. Anal. Chem. ), 2013, 43: 20.
[64] Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G. Sens. Actuators B: Chem., 2010, 145: 488.
[65] Nie Z H, Nijhuis C A, Gong J H, Chen X, Kumachev A, Martinez A W, Narovlyansky M, Whitesides G M. Lab Chip, 2010, 10: 477.
[66] Lei K F, Lee K F, Yang S I. Microelectron. Eng., 2012, 100: 1.
[67] Wang L B, Chen W, Xu D H, Shim B S, Zhu Y Y, Sun F X, Liu L Q, Peng C F, Jin Z Y, Xu C L, Kotov N A. Nano Lett., 2009, 9: 4147.
[68] Yu J H, Ge L, Huang J D, Wang S M, Ge S G. Lab Chip, 2011, 11: 1286.
[69] Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J, Zeng F. Biosens. Bioelectron., 2012, 31: 212.
[70] 王方方(Wang F F), 陈锦(Chen J), 何治柯(He Z K). 分析科学学报(J. Anal. Sci. ), 2011, 27: 137.
[71] Ornatska M, Sharpe E, Andreescu D, Andreescu S. Anal. Chem., 2011, 83: 4273.
[72] Wang W, Wu W Y, Wang W, Zhu J J. J. Chromatogr. A, 2010, 1217: 3896.
[73] Li C Z, Vandenberg K, Prabhulkar S, Zhu X N, Schneper L, Methee K, Rosser C J, Almeide E. Biosens. Bioelectron., 2011, 26: 4342.
[74] Hossain S M Z, Luckham R E, McFadden M J, Brennan J D. Anal. Chem., 2009, 81: 9055.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[12] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[13] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.