English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1774-1783 DOI: 10.7536/PC150515 前一篇   后一篇

• 综述与评论 •

全共轭嵌段共聚物的合成组装与应用

熊丽娜, 张雪勤*, 孙莹, 杨洪   

  1. 东南大学化学化工学院 南京 211189
  • 收稿日期:2015-05-01 修回日期:2015-06-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 张雪勤 E-mail:xqzhang@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21304018)和江苏省自然科学基金项目(No.BK20130619,BK20130617)资助

Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers

Xiong Lina, Zhang Xueqin*, Sun Ying, Yang Hong   

  1. College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
  • Received:2015-05-01 Revised:2015-06-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21304018) and the Jiangsu Provincial Natural Science Foundation of China (No. BK20130619,BK20130617).
全共轭嵌段共聚物体系将共轭聚合物的光电特性和嵌段聚合物的自组装优势相结合,是近几年发展起来的一类新型自组装光电功能材料,对其自组装机理、自组装结构与光电性能之间关系的研究,有利于共轭聚合物微观纳米结构的构筑以及未来光电器件的开发。本文主要介绍全共轭嵌段共聚物包括共轭聚电解质在内的合成发展过程,综述其在溶液中和薄膜状态下独特的自组装行为,介绍共轭聚合物在光电器件中的应用,并对其今后的研究方向做出展望。
Combining the optoelectronic characteristics of the conjugated polymers and the self-assembling behavior of the block polymers, all-conjugated block copolymers have been developed as a new class of optoelectronic functional materials with unique self-assembling behavior in recent years. Researching on the relationship among its assembling structure, the mechanism of self-assembly and the photophysical properties has significant impacts on the manipulating nanoscale morphology patterns of conjugated polymers and the development of organic photovoltaic devices. This paper reviews the development of the synthesis process of all-conjugated block copolymers including conjugated polyelectrolytes. Their unique behavior of self-assembly in solution and thin-film state is discussed. Finally, the application of conjugated polymers in optoelectronic devices is introduced, and its future research and development are prospected.

Contents
1 Introduction
2 Synthesis
2.1 Reaction between macromolecular precursors
2.2 Grignard metathesis
2.3 Synthesis of CPEs
3 Self-assembly
3.1 Self-assembly in solution
3.2 Self-assembly in thin film
4 Application
4.1 Application in PSC
4.2 Application in OFET
4.3 Application in PLED
5 Conclusion and outlook

中图分类号: 

()
[1] Lenes M, Morana M, Brabec C J, Blom P W M. Adv. Funct. Mater., 2009, 19(7): 1106.
[2] Service R F. Science, 2011, 332: 293.
[3] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539.
[4] Mas-Torrent M, Rovira C. Chem. Rev., 2011, 111: 4833.
[5] Wu W P, Liu Y Q, Zhu D B. Chem. Soc. Rev., 2010, 39: 1489.
[6] DI C A, Liu Y Q, Yu G, Zhu D B. Acc. Chem. Res., 2009, 42: 1573.
[7] Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem. Rev., 2012, 112(4): 2208.
[8] Gaylord B S, Heeger A J, Bazan G C. Proc. Natl. Acad. Sci.U. S. A., 2002, 99(17): 10954.
[9] Gaylord B S, Heeger A J, Bazan G C. J. Am. Chem. Soc., 2003, 125(4): 896.
[10] Liu B, Bazan G C. Chem. Mater., 2004, 16(23): 4467.
[11] Feng G X, Liang J, Liu B. Macromol. Rapid Commun., 2013, 34(9): 705.
[12] Shen X Q, Li L, Chan A C M, Gao N Y, Yao S Q, Xu Q H. Adv. Optical Mater., 2013, 1(1): 92.
[13] Pu K Y, Li K, Liu B. Adv. Funct. Mater., 2010, 20(17): 2770.
[14] Feng X L, Tang Y L, Duan X R, Liu L B, Wang S. J. Mater. Chem., 2010, 20(7): 1312.
[15] Hinkens D M, Chen Q, Siddiki M K, Gosztola D, Tapsak M A, Qiao Q, Jeffries-EL M, Darling S B. Polymer, 2013, 54: 3510.
[16] Verduzco R, Botiz I, Pickel D L, Michael Kilbey II S, Hong K, Dimasi E, Darling S B. Macromolecules, 2011, 44: 530.
[17] Sperschneider A, Hund M, Schoberth H G, Schacher F H, Tsarkova L, Muller A H E, Boker A. ACS Nano, 2010, 4: 5609.
[18] Vogelsang J, Adachi T, Brazard J, Vanden Bout D A, Barbara P F. Nat. Mater., 2011, 10(12): 942.
[19] Sinnokrot M O, Sherrill C D. J. Am. Chem. Soc., 2004, 126(24): 7690.
[20] Sommer M, Huettner S, Thelakkat M. J. Mater. Chem., 2010, 20(48): 10788.
[21] Schmitt C, Nothofer H G, Falcou A, Scherf U. Macromol. Rapid Commun., 2001, 22(8): 624.
[22] Güntner R, Asawapirom U, Forster M, Schmitt C, Stiller B, Tiersch B, Falcou A, Nothofer H G, Scherf U. Thin Solid Films, 2002, 417(1/2): 1.
[23] Sun S, Fan Z, Wang Y, Haliburton J, Taft C, Maaref S, Seo K, Bonner C E. Synth. Met., 2003, 137(1/3): 883.
[24] Sun S S. Sol. Energy Mater. Sol. Cells, 2003, 79: 257.
[25] Sun S, Fan Z, Wang Y, Haliburton J. J. Mater. Sci., 2005, 40(6): 1429.
[26] Zhang C, Choi S, Haliburton J, Cleveland T, Li R, Sun S-S, Ledbetter A, Bonner C E. Macromolecules, 2006, 39(13): 4317.
[27] Sun S S, Zhang C, Ledbetter A, Choi S, Seo K, Bonner C E, Drees M, Sariciftci N S. Appl. Phys. Lett., 2007, 90(4): 043117..
[28] McCullough R D, Williams S P, Tristram-Nagle S, Jayaraman M, Ewbank P C, Miller L. Synth. Met., 1995, 69(1/3): 279.
[29] Loewe R S, Khersonsky S M, McCullough R D. Adv. Mater., 1999, 11(3): 250.
[30] Sheina E E, Liu J S, Iovu M C, Laird D W, McCullough R D. Macromolecules, 2004, 37(10): 3526.
[31] Iovu M C, Sheina E E, Gil R R, McCullough R D. Macromolecules, 2005, 38(21): 8649.
[32] Yokoyama A, Miyakoshi R, Yokozawa T. Macromolecules, 2004, 37(4): 1169.
[33] Miyakoshi R, Yokoyama A, Yokozawa T. J. Am. Chem. Soc., 2005, 127(49): 17542.
[34] Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. J. Am. Chem. Soc., 2007, 129(23): 7236.
[35] Stefan M C, Javier A E, Osaka I, McCullough R D. Macromolecules, 2009, 42(1): 30.
[36] Miyakoshi R, Shimono K, Yokoyama A, Yokozawa T. J. Am. Chem. Soc., 2006, 128(50): 16012.
[37] Wen L, Duck B C, Dastoor P C, Rasmussen S C. Macromolecules, 2008, 41(13): 4576.
[38] Zhang Y, Tajima K, Hirota K, Hashimoto K. J. Am. Chem. Soc., 2008, 130(25): 7812.
[39] Ohshimizu K, Ueda M. Macromolecules, 2008, 41(14): 5289.
[40] Chueh C C, Higashihara T, Tsai J H, Ueda M, Chen W C. Org. Electron., 2009, 10(8): 1541.
[41] Wu P T, Ren G, Li C, Mezzenga R, Jenekhe S A. Macromolecules, 2009, 42(7): 2317.
[42] Kim J, Song I Y, Park T. Chem. Commun., 2011, 47(16): 4697.
[43] Song I Y, Kim J, Im M J, Moon B J, Park T. Macromolecules, 2012, 45(12): 5058.
[44] Im M J, Son S Y, Moon B J, Lee G Y, Kim J H, Park T. Org. Electron., 2013, 14(11): 3046.
[45] Lee E, Hammer B, Kim J K, Page Z, Emrick T, Hayward R C. J. Am. Chem. Soc., 2011, 133(27): 10390.
[46] Stefan M C, Bhatt M P, Sista P, Magurudeniya H D. Polym. Chem., 2012, 3(7): 1693.
[47] Suspene C, Miozzo L, Choi J, Gironda R, Geffroy B, Tondelier D, Bonnassieux Y, Horowitz G, Yassar A. J. Mater. Chem., 2012, 22(10): 4511.
[48] Thomas A, Houston J E, Van den Brande N, De Winter J, Chevrier M, Heenan R K, Terry A E, Richeter S, Mehdi A, Van Mele B, Dubois P, Lazzaroni R, Gerbaux P, Evans R C, Clement S. Polym. Chem., 2014, 5(10): 3352.
[49] Xia H, Ye Z, Liu X F, Peng J, Qiu F. RSC Adv., 2014, 4(38): 19646.
[50] Kudret S, Van den Brande N, Defour M, Van Mele B, Lutsen L, Vanderzande D, Maes W. Polym. Chem., 2014, 5(6): 1832.
[51] Gutacker A, Lin C Y, Ying L, Nguyen T Q, Scherf U, Bazan G C. Macromolecules, 2012, 45(11): 4441.
[52] Ying L, Zalar P, Collins S D, Chen Z, Mikhailovsky A A, Nguyen T Q, Bazan G C. Adv. Mater., 2012, 24(48): 6496.
[53] Miyakoshi R, Yokoyama A, Yokozawa T. Chem. Lett., 2008, 37(10): 1022.
[54] Wu S P, Bu L, Huang L, Yu X H, Han Y C, Geng Y H, Wang F S. Polymer, 2009, 50(26): 6245.
[55] Yu X H, Yang H, Wu S P, Geng Y H, Han Y C. Macromolecules, 2012, 45(1): 266.
[56] Kong F, Zhang X Q, Lin B P, Yang Y M, Qiu T. J. Appl. Phys., 2011, 110(10): 104304.
[57] Zhang X Q, Yang W W, Kong F, Yang H, Lin B P. Polym. Int., 2013, 62(2): 204.
[58] Zhang X Q, Zhang S, Kong F, Yang H, Sun Y, Lin B P. Physica B 2013, 420: 49.
[59] Lee Y H, Chen W C, Yang Y L, Chiang C J, Yokozawa T, Dai C A. Nanoscale, 2014, 6(10): 5208.
[60] Tu G L, Li H B, Forster M, Heiderhoff R, Balk L J, Sigel R, Scherf U. Small, 2007, 3(6): 1001.
[61] Scherf U, Gutacker A, Koenen N. Acc. Chem. Res., 2008, 41(9): 1086.
[62] Scherf U, Adamczyk S, Gutacker A, Koenen N. Macromol. Rapid Commun., 2009, 30(13): 1059.
[63] Gutacker A, Adamczyk S, Helfer A, Garner L E, Evans R C, Fonseca S M, Knaapila M, Bazan G C, Burrows H D, Scherf U. J. Mater. Chem., 2010, 20(8): 1423.
[64] Knaapila M, Evans R C, Gutacker A, Garamus V M, Torkkeli M, Adamczyk S, Forster M, Scherf U, Burrows H D. Langmuir, 2010, 26(7): 5056.
[65] Gutacker A, Koenen N, Scherf U, Adamczyk S, Pina J, Fonseca S M, Valente A J M, Evans R C, de Melo J S, Burrows H D, Knaapila M. Polymer, 2010, 51(9): 1898.
[66] Yokoyama A, Kato A, Miyakoshi R, Yokozawa T. Macromolecules, 2008, 41(20): 7271.
[67] Pinto M R, Schanze K S. Synthesis-Stuttgart, 2002, (9): 1293.
[68] Huang F, Hou L T, Wu H B, Wang X H, Shen H L, Cao W, Yang W, Cao Y. J. Am. Chem. Soc., 2004, 126(31): 9845.
[69] Seo J H, Gutacker A, Sun Y M, Wu H B, Huang F, Cao Y, Scherf U, Heeger A J, Bazan G C. J. Am. Chem. Soc., 2011, 133(22): 8416.
[70] Huang F, Wu H B, Cao Y. Chem. Soc. Rev., 2010, 39(7): 2500.
[71] Duan C H, Zhang K, Zhong C M, Huang F, Cao Y. Chem. Soc. Rev., 2013, 42(23): 9071.
[72] Hu Z C, Zhang K, Huang F, Cao Y. Chem. Commun., 2015, 51(26): 5572.
[73] Izuhara D, Swager T M. J. Am. Chem. Soc., 2009, 131(49): 17724.
[74] Izuhara D, Swager T M. Macromolecules, 2011, 44(8): 2678.
[75] Vriezema D M, Aragones M C, Johannes A A W E, Cornelissen J L M, Rowan A E, Nolte R J M. Chem. Rev., 2005, 105(4): 1445.
[76] He Z, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y. Adv. Mater., 2011, 23(40): 4636.
[77] He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y. Nature Photonics, 2012, 6(9): 591.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.