English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 859-869 DOI: 10.7536/PC170512 前一篇   后一篇

• 综述 •

二维钙钛矿材料及其在光电器件中的应用

王宏磊1, 吕文珍1, 唐星星1, 陈铃峰1, 陈润锋1*, 黄维2*   

  1. 1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子和信息显示协同创新中心 南京 210023;
    2. 南京工业大学先进材料研究院 江苏省柔性电子重点实验室 先进生物与化学制造协同创新中心 南京 211816
  • 收稿日期:2017-05-05 修回日期:2017-06-30 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 陈润锋,E-mail:iamrfchen@njupt.edu.cn;黄维,wei-huang@njtech.edu.cn E-mail:iamrfchen@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21304049,21674049,21001065,21274065,21601091),江苏省自然科学基金项目(No.BK20160891),南京邮电大学1311人才项目和人才科研启动基金项目(No.NY216028)资助

Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices

Honglei Wang1, Wenzhen Lv1, Xingxing Tang1, Lingfeng Chen1, Runfeng Chen1*, Wei Huang2*   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2017-05-05 Revised:2017-06-30 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21304049, 21674049, 21001065, 21274065, 21601091), the Natural Science Foundation of Jiangsu Province of China (No. BK20160891), the 1311 Talents Program and the Startup Foundation for Talents of Nanjing University of Posts and Telecommunications(No. NY216028).
二维钙钛矿作为一种新型光电材料,既具有二维材料的可溶液加工、柔性、可穿戴性以及廉价容易制备等特点,又具备钙钛矿材料结晶度高、载流子迁移率高、激子束缚能低、量子效率高、吸收光谱宽、光吸收系数高和能耗损失低等特性,已经成为材料研究领域的热点而受到广泛关注。本文深入分析了二维钙钛矿材料的组成特点及结构构建规则,探究了其光电特性、能带性质以及非线性光学性质等,对二维钙钛矿光电材料常见的两大类制备方法液相法和气相法进行了归纳,总结了二维钙钛矿材料在太阳能电池、光电探测器、发光二极管、场效应晶体管和激光等光电器件领域的应用现状,最后对该类材料目前存在的主要问题及未来发展前景进行了展望,以期为设计制备高性能二维钙钛矿光电材料提供参考。
Two-dimensional (2D) perovskites have become a research hotspot as one kind of high-performance optoelectronic devices, attracting a great deal of attention in recent years due to their unique structures and interesting optoelectronic properties. Besides the solution-processable, fiexible and wearable characteristics similar to the conventional 2D materials, these new 2D materials can be assembled into uniform and fiexible ultrathin films with highly oriented microstructures. Also, they have a long charge carrier diffusion lengths, low binding energy, high quantum yield, high crystallinity, broad absorption spectra, high light absorption coefficients, low rates of non-radiative charge recombination inherited from three dimensional perovskites. In this review, we focus on the composition characteristics, structural formation rules, photoelectric properties and nonlinear optical properties of two-dimensional perovskites. Specifically, we classify the preparation methods of two-dimensional perovskites into two main types of the solution method and vapor method. Furthermore, we comprehensively summarize the recent advancements of two-dimensional perovskites in the applications of solar cells, photodetectors, light-emitting diodes, field effect transistors and lasers.We also discuss the current challenges and future research directions to achieve optimal performance for practical applications in detail to provide applicable suggestions in designing high-performance two dimensional perovskites for advanced optoelectronic devices in the future.Contents
1 Introduction
2 Structure and properties of two-dimensional perovskites
2.1 Structure of two-dimensional perovskites
2.2 Formation rule of two-dimensional perovskites
2.3 Optoelectronic properties of two-dimensional perovskites
2.4 Band gap and nonlinear optical properties of two-dimensional perovskites
3 Synthesis of two-dimensional perovskites
3.1 Solution methods
3.2 Vapor methods
4 The applications on optoelectronic devices of two-dimensional perovskites
4.1 Solar cells
4.2 Photodetectors
4.3 Light-emitting diodes
4.4 Field effect transistors
5 Conclusion

中图分类号: 

()
[1] Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S. Angew. Chem. Int. Ed., 2014, 53(11):2812.
[2] De Wolf S, Descoeudres A, Holman Z C, Ballif C. Green, 2012, 2(1):7.
[3] Chueh C C, Li C Z, Jen A K Y. Energy Environ. Sci., 2015, 8(4):1160.
[4] Wehrenfennig C, Liu M, Snaith H J, Johnston M B, Herz L M. Energy Environ. Sci., 2014, 7(7):2269.
[5] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, H rantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J. Science, 2016, 351(6269):151.
[6] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. Science, 2015, 347(6221):522.
[7] Niu G, Guo X, Wang L. J. Mater. Chem. A, 2015, 3(17):8970.
[8] Giustino F, Snaith H J. ACS Energy Lett., 2016, 1:1233.
[9] Zuo C, Ding L. Angew. Chem. Int. Ed., 2017, 56:6528.
[10] Cai B, Zhang S, Yan Z, Zeng H. ChemNanoMat, 2015, 1(8):542.
[11] Zhu Z, Zou Y, Hu W, Li Y, Gu Y, Cao B, Guo N, Wang L, Song J, Zhang S, Gu H, Zeng H. Adv. Funct. Mater., 2016, 26(11):1793.
[12] Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D. Nano Lett., 2010, 10(12):5049.
[13] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J. Nature Nanotechnol., 2010, 5(10):722.
[14] Zhang X, Lai Z, Tan C, Zhang H. Angew. Chem., 2016, 55(31):8816.
[15] Schusteritsch G, Uhrin M, Pickard C J. Nano Lett., 2016, 16(5):2975.
[16] Rao C N, Gopalakrishnan K, Maitra U. ACS Appl. Mater. Interfaces, 2015, 7(15):7809.
[17] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E. ACS Nano, 2013, 7(4):2898.
[18] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L. Nature Nanotechnol., 2014, 9(10):768.
[19] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nature Nanotechnol., 2012, 7(11):699.
[20] An X, Liu F, Jung Y J, Kar S. Nano Lett., 2013, 13(3):909.
[21] Padmajan Sasikala S, Poulin P, Aymonier C. Adv. Mater., 2016, 28(14):2663.
[22] Huang X, Qi X, Boey F, Zhang H. Chem. Soc. Rev., 2012, 41(2):666.
[23] Chen S, Shi G. Adv. Mater., 2017, 29(24):1605448.
[24] Huo C, Cai B, Yuan Z, Ma B, Zeng H. Small Methods, 2017, 1(3):1600018.
[25] Wei S, Yang Y, Kang X, Wang L, Huang L, Pan D. Chem. Commun., 2016, 52(45):7265.
[26] van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C. J. Am. Chem. Soc., 2017, 139(11):4087.
[27] Liu M, Voznyy O, Sabatini R, Garcia de Arquer F P, Munir R, Balawi A H, Lan X, Fan F, Walters G, Kirmani A R, Hoogland S, Laquai F, Amassian A, Sargent E H. Nature Mater., 2017, 16(2):258.
[28] Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D'Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L, De Angelis F, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(3):1010.
[29] Yaffe O, Chernikov A, Norman Z M, Zhong Y, Velauthapillai A, van der Zande A, Owen J S, Heinz T F. Phys. Rev. B, 2015, 92(4):045414.
[30] Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q. Adv. Opt. Mater., 2014, 2(9):838.
[31] Wang G, Li D, Cheng H C, Li Y, Chen C Y, Yin A, Zhao Z, Lin Z, Wu H, He Q, Ding M, Liu Y, Huang Y, Duan X. Sci. Adv., 2015, 1(9):1.
[32] Kang L, Ramo D M, Lin Z, Bristowe P D, Qin J, Chen C. J. Mater. Chem. C, 2013, 1(44):7363.
[33] Hamaguchi R, Yoshizawa-Fujita M, Miyasaka T, Kunugita H, Ema K, Takeoka Y, Rikukawa M. Chem. Commun., 2017, 53:4366.
[34] Zhou H, Chen Q, Li G, Luo S, Song T b, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345(6196):542.
[35] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energy Environ. Sci., 2014, 7(3):982.
[36] Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P. J. Am. Chem. Soc., 2015, 137(51):16008.
[37] Wang K H, Wu L, Li L, Yao H B, Qian H S, Yu S H. Angew. Chem. Int. Ed., 2016, 55(29):8328.
[38] Chen J, Gan L, Zhuge F, Li H, Song J, Zeng H, Zhai T. Angew. Chem. Int. Ed., 2017, 129(9):2430.
[39] Zhang Q, Su R, Liu X, Xing J, Sum T C, Xiong Q. Adv. Funct. Mater., 2016, 26(34):6238.
[40] Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H. Adv. Mater., 2016, 28(24):4861
[41] Shamsi J, Dang Z, Bianchini P, Canale C, Stasio F D, Brescia R, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(23):7240.
[42] Tyagi P, Arveson S M, Tisdale W A. J. Phys. Chem. Lett., 2015, 6(10):1911.
[43] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Nature Nanotechnol., 2016, 11(10):872.
[44] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Science, 2015, 349(6255):1518.
[45] Yang S, Niu W, Wang A L, Fan Z, Chen B, Tan C, Lu Q, Zhang H. Angew. Chem. Int. Ed., 2017, 56:1.
[46] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G. Nature, 2016, 536(7616):312.
[47] Liu M, Johnston M B, Snaith H J. Nature, 2013, 501(7467):395.
[48] Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y, Bao Q. ACS Nano, 2016, 10(3):3536.
[49] Gan X, Wang O, Liu K, Du X, Guo L, Liu H. Sol. Energy Mater. Sol. Cells, 2017, 162:93.
[50] Safdari M, Svensson P H, Hoang M T, Oh I, Kloo L, Gardner J M. J. Mater. Chem. A, 2016, 4(40):15638.
[51] Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Muller-Buschbaum P, Docampo P. ACS Nano, 2016, 10(6):5999.
[52] Liu J, Leng J, Wu K, Zhang J, Jin S. J. Am. Chem. Soc., 2017, 139(4):1432.
[53] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Nature Nanotechnol., 2009, 4(12):839.
[54] Tan Z, Wu Y, Hong H, Yin J, Zhang J, Lin L, Wang M, Sun X, Sun L, Huang Y, Liu K, Liu Z, Peng H. J. Am. Chem. Soc., 2016, 138(51):16612.
[55] Kim J K, Luo H, Schubert E F, Cho J, Sone C, Park Y. Jpn. J. Appl. Phys., 2005, 44(21):649.
[56] Era M, M S, Tsutsui T, Saito S. App. Phys. Lett., 1994, 65(6):676.
[57] Ling Y, Yuan Z, Tian Y, Wang X, Wang J C, Xin Y, Hanson K, Ma B, Gao H. Adv. Mater., 2016, 28(2):305.
[58] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Nature Photon., 2016, 10(11):699.
[59] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A. Nature Nanotechnol., 2013, 8(2):100.
[60] Ghatak S, Pal A N, Ghosh A. ACS Nano, 2011, 5(10):7707.
[61] Li D, Wang G, Cheng H C, Chen C Y, Wu H, Liu Y, Huang Y, Duan X. Nat. Commun., 2016, 7:11330.
[62] Wang A, Yan X, Zhang M, Sun S, Yang M, Shen W, Pan X, Wang P, Deng Z. Chem. Mater., 2016, 28(22):8132.
[63] Kagan C R, Mitzi D B, Dimitrakopoulos C D. Science, 1999, 286(5441):945.
[64] Mitzi D B, Dimitrakopoulos C D, Rosner J, Medeiros D R, Xu Z, Noyan C. Adv. Mater., 2002, 14(23):1772.
[65] Toshinori M, Katsuhiko F, Tetsuo T. Jpn. J. Appl. Phys., 2004, 43(9A):L1199.
[66] Matsushima T, Hwang S, Sandanayaka A S, Qin C, Terakawa S, Fujihara T, Yahiro M, Adachi C. Adv. Mater., 2016, 28(46):10275.
[67] Lei S, Wen F, Li B, Wang Q, Huang Y, Gong Y, He Y, Dong P, Bellah J, George A, Ge L, Lou J, Halas N J, Vajtai R, Ajayan P M. Nano Lett., 2015, 15(1):259.
[68] Li P, Chen Y, Yang T, Wang Z, Lin H, Xu Y, Li L, Mu H, Shivananju B N, Zhang Y, Zhang Q, Pan A, Li S, Tang D, Jia B, Zhang H, Bao Q. ACS Appl. Mater. Interfaces, 2017, 9(14):12759.
[69] Ha S T, Shen C, Zhang J, Xiong Q. Nature Photon., 2016, 10(2):115.
[1] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[4] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[5] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[9] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[10] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[11] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[12] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[13] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.