English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 14-28 DOI: 10.7536/PC170912 前一篇   后一篇

• 综述 •

高性能电解水电极催化材料的设计及产品工程

彭立山, 魏子栋*   

  1. 重庆大学化学化工学院 新能源化工实验室 重庆 400044
  • 收稿日期:2017-09-12 修回日期:2017-10-09 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 魏子栋,e-mail:zdwei@cqu.edu.cn E-mail:zdwei@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.91534205,21436003,21306232)资助

Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis

Lishan Peng, Zidong Wei*   

  1. New Energy Chemical Laboratory, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2017-09-12 Revised:2017-10-09 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 91534205, 21436003, 21306232).
随着市场竞争的加剧,以产品需求为导向精确定制符合需求的化学品成为化学工程研究发展的探索新方向。电解水制氢是生产高纯氢气并转换储存大规模可再生能源的一种有效方法。为实现高效的电-氢气转换效率,高性能的电解水析氢析氧电极是必不可少的。电解水电极材料具有复杂的化学组成及多层次的结构,其中电极表面催化材料的物理化学性质和形貌结构是决定电解水性能的最主要因素。本文结合本课题组在电解水催化方面的研究工作,综述了近几年国内外电解水电极催化材料的最新研究进展,阐述了电解水电极催化材料以反应机理为导向的催化剂设计理论、以产品性能为导向的催化剂设计方法学(包括纳米结构构筑、晶面调控、载体复合、晶相调节、杂原子掺杂、合金化和聚合物表面修饰)及应用,针对化学产品工程的发展与需要,介绍了电解水电极催化材料跨越分子尺度、微纳结构及合成应用的产品设计和产品工程研究的关键科学问题和发展方向。
Along with market competition intensifying, accurately customizing the chemicals that meet the product demand has become the new trend of chemical engineering research. Hydrogen production by water electrolysis is an effective technology to store the intermittent electric power generated by large-scale renewable energy. To achieve high electricity-to-hydrogen conversion efficiency, efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are essentially required. Electrode catalytic materials for water electrolysis have complicated chemical composition and multi-level structure, of which the chemical-physical properties and morphology structure are the main factors that determine the performance of electrolysis of water. In this paper, combining the research works on water electrolysis catalysts of our group, the recent advancements in the area of HER and OER catalysts with emphasis on catalyst design and engineering are reviewed. The catalyst design theories based on reaction mechanism of electrolytic water, catalyst design methodology (including nanoarchitecture, crystal face regulation, support combination, phase adjustment, heteroatom doping, alloying and surface modification) and their applications based on catalytic performance have been introduced in the light of product requirements. According to the development and requirement of chemical product engineering, the key scientific problems and development direction of the catalyst design and product engineering from molecular level to micro-nano structure scale as well as product synthesis and application are further provided.
Contents
1 Introduction
2 Reaction mechanism-oriented catalyst design theory
2.1 Reaction mechanism of electrolytic water
2.2 Reaction mechanism and catalyst design strategy of hydrogen evolution
2.3 Reaction mechanism and catalyst design strategy of oxygen evolution
3 Performance-oriented catalyst design methodology and application
3.1 Design principles of electrocatalyst
3.2 Design strategy based on geometric factor
3.3 Design strategy based on energy factor
4 Industrialization-oriented electrode construction design
4.1 Energy consumption of industrial water electrolysis
4.2 Technical requirements and construction design of industrial electrode
5 Conclusion and outlook

中图分类号: 

()
[1] Bailera M, Kezibri N, Romeo L M, Espatolero S, Lisbona P, Bouallou C. Int. J. Hydrogen Energ., 2017, 42:13625.
[2] Ahmed A, Al-Amin A Q, Ambrose A F, Saidur R. Int. J. Hydrogen Energ., 2016, 41:1369.
[3] 刘芸(Liu Y). 电源技术(Chinese Journal of Power Sources), 2012, 36:1579.
[4] Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S. Int. J. Hydrogen Energ., 2007, 32:3797.
[5] Kothari R, Buddhi D, Sawhney R L.Renew. Sust. Energ. Rev., 2008, 12:553.
[6] Holladay J D, Hu J, King D L, Wang Y. Catal. Today, 2009, 139:244.
[7] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Prog. Chem.), 2008, 20:778.
[8] Roy A, Watson S, Infield D. Int. J. Hydrogen Energ., 2006, 31:1964.
[9] 刘明义(Liu M Y), 郑建涛(Zheng J T), 徐海卫(Xu H W), 刘冠杰(Liu G J), 曹传钊(Cao C Z). 中国电机工程学会年会(Chinese Electrical Engineering Society), 2013.
[10] Stojic D L, Marceta M P, Sovilj S P, Miljanic S S. J. Power Sources, 2003, 118:315.
[11] Zou X, Zhang Y.Chem. Soc. Rev., 2015, 44, 5148.
[12] Zeng K, Zhang D. Prog. Energ. Comst., 2010, 36:307.
[13] Sheng W C, Gasteiger H A, Shao-Horn Y. J. Electrochem. Soc., 2010, 157:B1529.
[14] Jiao Y, Zheng Y, Jaroniec M T, Qiao S Z. Chem. Soc. Rev., 2015, 44:2060.
[15] Bockris J O M, Potter E C. J. Electrochem. Soc., 1952, 99:169.
[16] Parsons R. Trans. Faraday Soc., 1958, 54:1053.
[17] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. J. Electrochem.Soc., 2005, 152:J23.
[18] Lodi G, Sivieri E, Battisti A D, Trasatti S. J. Appl. Electrochem., 1978, 8:135.
[19] Castelli P, Trasatti S, Pollak F H, O'Grady W E. J. Electroanal. Chem., 1986, 210:189.
[20] Fierro S, Nagel, T, Baltruschat H, Comninellis C. Electrochem. Comm., 2007, 9:1969.
[21] Mehandru S P, Anderson A B. J. Electrochem. Soc., 1989, 136:158.
[22] Apos J, Bockris M. J. Chem. Phys., 1956, 24:817.
[23] Bockris J O M, Otagawa T.J. Phys. Chem., 1983, 87:2960.
[24] Bockris J O M, Otagawa T, Young V.J. Electroanal. Chem., 1983, 150:633.
[25] Rüetschi P, Delahay P. J. Chem. Phys., 1955, 23:556.
[26] Trasatti S. J. Electroanal. Chem., 1980, 111:125.
[27] Hickling A, Hill S. Discuss. Faraday Soc., 1947, 1:236.
[28] Tseung A C C, Jasem S. Electrochim. Acta, 1977, 22:31.
[29] Rasiyah P, Tseung A C C. J. Electrochem. Soc., 1984, 131:803.
[30] 钱宇(Qian Y), 钱吉铮(Qian J Z), 江燕斌(Jiang Y B), 章莉娟(Zhang L J), 纪红兵(Ji H B). 化工进展(Chem. Ind. Eng. Prog.), 2003, 22:217.
[31] Vesborg P C K, Jaramillo T F. RSC Adv., 2012, 2:7933.
[32] Brown D E, Mahmood M N, Turner A K, Hall S M, Fogarty P O. Int. J. Hydrogen Energ., 1982, 7:405.
[33] Navarro-Flores E, Chong Z W, Omanovic S. J. Mol. Catal.A-Chem., 2005, 226:179.
[34] McKone J R, Sadtler B F, Werlang C A, Lewis N S, Gray H B. ACS Catal., 2013, 3:166.
[35] Gao M R, Xu Y F, Jiang J, Yu S H. Chem. Soc. Rev., 2013, 42:2986.
[36] Peng L S, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, Chen K, Ding W, Li L, Wei Z D. ACS Catal., 2017, 7:8184.
[37] Mai L Q, Tian X C, Xu X, Chang L, Xu L. Chem. Rev., 2014, 114:11828.
[38] Morales-Guio C G, Stern L A, Hu X. Chem. Soc. Rev., 2014, 43:6555.
[39] Carenco S, Portehault D, Boissiere C, Mezailles N, Sanchez C. Chem. Rev., 2013, 113:7981.
[40] Song F, Hu X L. Nat. Commun., 2014, 5:4477.
[41] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135:10274.
[42] Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13:6222.
[43] Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Energ. Environ. Sci., 2014, 7:2608.
[44] Peng L S, Nie Y, Zhang L, Xiang R, Wang J,Chen H M, Chen K, Wei Z D. ChemCatChem, 2017, 9:1588.
[45] Faber M S, Dziedzic R, Lukowski M A, Kaiser N S, Ding Q, Jin S. J. Am. Chem. Soc., 2014, 136:10053.
[46] Zhang L, Roling T, Wang X, Vara M, Chi M F, Liu J Y, Choi S I, Park J, Herron J A, Xie Z X, Mavrikakis M, Xia Y N. Science, 2015, 349:412.
[47] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316:732.
[48] Fan Z X, Luo Z M, Huang X, Li B, Chen Y, Wang J, Hu Y L, Zhang H. J. Am. Chem. Soc., 2016, 138:1414.
[49] Zhang S, Guo S J, Zhu HY, Su D, SunS H. J. Am. Chem. Soc., 2012, 134:5060.
[50] Strmcnik D S, Tripkovic D V, van der Vliet D, Chang K C, Komanicky V, You H, Karapetrov G, Greeley J, Stamenkovic V R, Markovic N M. J. Am. Chem Soc., 2008, 130:15332.
[51] Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Nat. Chem., 2013, 5:300.
[52] Ling T, Yan D Y, Jiao Y, Wang H, Zheng Y, Zheng X Y, Mao J, Du X W, Hu Z P, Jaroniec M, Qiao S Z. Nat. Commun., 2016, 7:12876.
[53] Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. J. Am. Chem. Soc., 2015, 137:14023.
[54] Hu L H, Peng Q, Li Y D. J. Am. Chem. Soc., 2008, 130:16136.
[55] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458:746.
[56] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453:638.
[57] Su D, Dou S, Wang G. Sci. Rep., 2014, 4:5767.
[58] Gao R, Zhu J Z, Xiao X L, Hu Z B, Liu J J, Liu X F.J. Phys. Chem. C, 2015, 119:150211043634005.
[59] Su W, For M, Wan G X. Sci. Rep., 2012, 2:924.
[60] Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O'Hare D, Zhang T R. J.Am. Chem. Soc., 2016, 138:6517.
[61] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J. Am. Chem. Soc., 2012, 134:13252.
[62] Chen W F, Wang C H, Sasaki K, Marinkovic N, Xu W, Muckerman J T, Zhu Y, Adzic R R. Energ. Environ. Sci., 2013, 6:943.
[63] Liang Y Y, Li Y G, Wang H L, Dai H J. J. Am. Chem. Soc., 2013, 135, 2013.
[64] 秦瑞杰(Qin R J), 张占男(Zhang Z N), 王宇新(Wang Y X). 化学工业与工程(Chemical Industry and Engineering), 2017, 34:21.
[65] Liu M J, Dong Y Z, Wu Y M, Feng H B, Li J H. Chem. -Eur. J., 2013, 19:14781.
[66] Tsai C, Abild-Pedersen F, Norskov J K. Nano Lett., 2014, 14:1381.
[67] Deng Z H, Li L, Ding W, Xiong K, Wei Z D. Chem. Commun., 2015, 51:1893.
[68] Li D J, Maiti U N, Lim J, Choi D S, Lee W J, Oh Y, Lee G Y, Kim S O. Nano Lett., 2014, 14:1228.
[69] Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Nat. Mater., 2011, 10:780.
[70] Yeo S, Bel A T. J. Am. Chem. Soc., 2011, 133:5587.
[71] Yan Y, Xia B Y, Qi X Y, Wang H B, Xu R, Wang J Y, Zhang H, Wang X. Chem. Commun., 2013, 49:4884.
[72] Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Energ. Environ. Sci., 2013, 6:2921.
[73] Xiong K, Li L, Deng Z H, Xia M R, Chen S G, Tan S Y, Peng X J, Duan C Y, Wei Z D. RSC Adv., 2014, 4:20521.
[74] Wu J, Xue Y, Yan X, Yan W S, Cheng Q M, Xie Y. Nano Res., 2012, 5:521.
[75] Wang S, Wang J, Zhu M, Bao X, Xiao B, Su D, Li H, Wang Y. J. Am. Chem. Soc., 2015, 137:15753.
[76] Wan C, Regmi Y N, Leonard B M. Angew. Chem. Int. Ed., 2014, 53:6407.
[77] Wang H T, Lu Z Y, XuS C, Kong D S, Cha J J, Zheng G Y,Hsu P C, Yan K,Bradshaw D, Prinz F B,Cui Y P. Natl. Acad. Sci. U.S.A., 2013, 110:19701.
[78] Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S. J. Am. Chem. Soc., 2014, 136:8504.
[79] Voiry D,Yamaguchi H, LiJ W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, EdaG, Chhowalla M. Nat. Mater., 2013, 12:850.
[80] Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Adv. Mater., 2013, 25:5807.
[81] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135:17881.
[82] Seger B, Laursen A B, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2012, 51:9128.
[83] Wang T Y, Zhuo J Q, Du K Z, Chen B B, Zhu Z W, Shao Y H, Li M X. Adv. Mater., 2014, 26:3761.
[84] Morales-Guio C G, Hu X L. Acc. Chem. Res., 2014, 47:2671.
[85] Paseka I.Electrochim. Acta, 1995, 40:1633.
[86] Deng J F, Li H X, Wang W J. Catal. Today, 1999, 51:113.
[87] Joshua M M, J Chance C, Juan F C, Eric J P, Carlos G R, Nathan S L, Raymond E S. Chem. Comm., 2014, 50:11026.
[88] Smith R D, Prevot M S, Fagan R D, Trudel S, Berlinguette C P. J. Am. Chem. Soc., 2013, 135:11580.
[89] Smith R D, Prevot M S, Fagan R D, Zhang Z, Sedach P A, Siu M K, Trudel S, Berlinguette C P. Science, 2013, 340:60.
[90] Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, Geng B. Angew. Chem. Int. Ed., 2014, 53:7547.
[91] Jiang W J, Niu S, Tang T, Zhang Q H, Liu X Z, Zhang Y, Chen Y Y, Li J H, Gu L, Wan L J, Hu J S. Angew. Chem. Int. Ed., 2017, 56:6572.
[92] Benck J D, Chen Z B, Kuritzky L Y, Forman A J, Jaramillo T F. ACS Catal., 2012, 2:1916.
[93] Alexander A M, Hargreaves J S J. Chem. Soc. Rev., 2010, 39:4388.
[94] Zhang X, Zhang X, Xu H, Wu Z, Wang H, Liang Y. Adv. Funct. Mater., 2017, 27:1606635.
[95] Peng L S, Shen J J, Zhang L, Wang Y, Xiang R, Li J, Li L, Wei Z D. J. Mater. Chem. A, 2017, DOI:10.1039/C7TA07275A.
[96] Li H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Adv. Funct. Mater., 2016, 26:5590.
[97] Pan Y, Liu Y, Lin Y, Liu C. ACS Appl. Mater. Interfaces, 2016, 8:13890.
[98] Tang C, Zhang R, Lu W, He L, Jiang X, Asiri A M, Sun X. Adv. Mater., 2017, 29.
[99] Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri A M, Sun X, Chen L. ACS Catal., 2016, 7:98.
[100] 吴凯(Wu K). 物理化学学报(Acta Phys-Chim. Sin.), 2016, 32:2819.
[101] Bonde J, Moses P G, Jaramillo T F, Norskov J K, Chorkendorff I. Faraday Discuss., 2008, 140:219.
[102] Zhang K, KimH J, Lee J T, Chang G W, Shi X, Kim W, Ma M, Kong K J, Choi J M, Song M S, Park J H. ChemSusChem, 2014, 7:2489.
[103] Lv X J, She G W, Zhou S X, Li Y M. RSC Adv., 2013, 3:21231.
[104] Sun X, Dai J, Guo Y Q, Wu C Z, Hu F T, Zhao J Y, Zeng X C, Xie Y. Nanoscale, 2014, 6:8359.
[105] Wang H T, Tsai C, Kong D S, Chan K R, Abild-Pedersen F, Norskov J, Cui Y. Nano Res., 2015, 8:566.
[106] Xiong K, Li L, Zhang L, Ding W, Peng L S, Wang Y, Chen S G, Tan S Y, Wei Z D. J. Mater. Chem. A, 2015, 3:1863.
[107] Chen P, Zhou T, Zhang M, Tong Y, Zhong C, Zhang N, Zhang L, Wu C, Xie Y. Adv. Mater., 2017, 29.
[108] Li Q, Han C, Ma X, Wang D, Xing Z, Yang X. J. Mater. Chem. A, 2017,DOI:10.1039/c7ta05188c.
[109] Zhuo J, Cabán-Acevedo M, Liang H, Samad L, Ding Q, Fu Y, Li M, Jin S. ACS Catal., 2015, 5:6355.
[110] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2014, 136:1680.
[111] Zhou W J, Hou D M, Sang Y H, Yao S H, Zhou J, Li G Q, Li L G, Liu H, Chen S W. J. Mater. Chem. A, 2014, 2:11358.
[112] 韩庆(Han Q), 魏绪钧(Wei X J), 刘奎仁(Liu K R). 中国有色金属学报(Chin. J. Nonferrous Met.), 2001, 11:158.
[113] 胡伟康(Hu W K), 张允什(Zhang Y S). 功能材料(Journal of Functional Materials), 1995, 456.
[114] Zhang L, Xiong K, Nie Y, Wang X X, Liao J H, Wei Z D. J. Power Sources, 2015, 297:413.
[115] Jaksic M M. Electrochim. Acta, 1984, 29:1539.
[116] Hoor F S, Aravinda C L, Ahmed M F, Mayanna S M. J. Power Sources, 2001, 103:147.
[117] Raj I A. J. Mater. Sci., 1993, 28:4375.
[118] Rosalbino F, Scavino G, Grande M A. J. Electroanal. Chem., 2013, 694:114.
[119] Wang X Q, Su R, Aslan H, Kibsgaard J, Wendt S, Meng L H, Dong M D, Huang Y D, Besenbacher F. Nano Energy, 2015, 12:9.
[120] 李凝(Li N), 高诚辉(Gao C H). 中国稀土学报(J. Chin. Rare Earth Soc.), 2010, 4:442.
[121] Wang T, Wang X J, Liu Y,Zheng J, Li X G.Nano Energy, 2016, 22:111.
[122] 胡琳萍(Hu L P). 重庆大学硕士论文(Master Dissertation of Chongqing University), 2016.
[123] Sabalová M, Oriňaková R, Oriňak A, Smoradová I, Kupková M, Strecková M. Chem. Pap., 2016, 71:513
[124] Feng J X, Ding L X, Ye S, He X J, Xu H,Tong Y X, Li G R. Adv. Mater., 2015, 27:7051
[125] Balun Kayan D, Koçak D. J. Solid State Electr., 2017,21(10):2791.
[126] Zhuo J, Wang T, Zhang G, Liu L, Gan L, Li M. Angew. Chem. Int. Ed., 2013, 52:10867
[127] Torres C, Moreno B, Chinarro E, de Fraga Malfatti C.Int. J. Hydrogen Energ., 2017, 42:20410.
[128] Dalla Corte D A, Torres C,dos Santos Correa P, Rieder E S, de Fraga Malfatti C.Int. J. Hydrogen Energ., 2012, 37:3025.
[129] Liu B, He J B, Chen Y J, Wang Y, Deng N. Int. J. Hydrogen Energ., 2013, 38:3130
[130] Raoof J B, Omrani A, Ojani R, Monfared F. J. Electroanal. Chem., 2009, 633:153.
[131] Wang H, Lin J, Shen Z X. Journal of Science:Advanced Materials and Devices, 2016, 1:225.
[132] Faber M S, Jin S. Energy Environ. Sci., 2014, 7:3519
[133] 陈延禧(Chen Y X). 电解工程(Electrochemical Engineering). 天津:天津科学技术出版社(Tianjin:Tianjin Scientific Technology Press), 1993.
[134] Oldham K, My l J. Electrochemical. Science,1993, 309:453.
[135] Janjua M B I, Le Roy R L. Int. J. Hydrogen Energ., 1985, 10:11.
[136] Bird R B, Steward W E, Lightfoot EN,Transport Phenomena. John Wiley & Sons, 1960, 28:338.
[137] Wendt H, Kreysa G. Electrochemical Engineering. Berlin Heidelberg:Springer, 1999.
[138] 张开悦(Zhang K Y), 刘伟华(Liu W H),陈晖(Chen H), 张博(Zhang B), 刘建国(Liu J G), 严川伟(Yan C W). 化工进展(Chem. Ind. Eng. Prog.), 2015, 34:3680.
[139] 衣宝廉(Yi B L). 无机盐工业(Inorg. Chem. Ind.), 1981, 6:8.
[140] Leroy R L. Int. J. Hydrogen Energ., 1983, 8:401.
[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[3] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[4] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[5] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[6] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[7] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[8] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[9] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[10] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[11] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[12] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[13] 张瑞, 刘璇, 纪红兵*. 天然香料纳微胶囊中间体[J]. 化学进展, 2018, 30(1): 29-43.
[14] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[15] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.